咨询与建议

限定检索结果

文献类型

  • 312 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 574 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 539 篇 工学
    • 515 篇 计算机科学与技术...
    • 106 篇 电气工程
    • 65 篇 软件工程
    • 39 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 52 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 47 篇 理学
    • 19 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
    • 2 篇 统计学(可授理学、...
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 4 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 574 篇 knowledge graph ...
  • 143 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 31 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 12 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 567 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
574 条 记 录,以下是391-400 订阅
排序:
Open-world knowledge graph completion for unseen entities and relations via attentive feature aggregation
收藏 引用
INFORMATION SCIENCES 2022年 586卷 468-484页
作者: Oh, Byungkook Seo, Seungmin Hwang, Jimin Lee, Dongho Lee, Kyong-Ho Yonsei Univ Dept Comp Sci Seoul South Korea
Most of knowledge graph completion (KGC) models are designed for static KGs where entity and relation sets are fixed. These approaches are inherently transductive because they simply predict the plausibility of facts ... 详细信息
来源: 评论
HYPER2: Hyperbolic embedding for hyper-relational link prediction
收藏 引用
NEUROCOMPUTING 2022年 492卷 440-451页
作者: Yan, Shiyao Zhang, Zequn Sun, Xian Xu, Guangluan Jin, Li Li, Shuchao Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100190 Peoples R China
knowledge graphs (KGs) embedding has been broadly studied in recent years. However, less light is shed on the ubiquitous hyper-relational KGs. Most existing hyper-relational KG embedding methods decompose n-ary facts ... 详细信息
来源: 评论
Degree aware based adversarial graph convolutional networks for entity alignment in heterogeneous knowledge graph
收藏 引用
NEUROCOMPUTING 2022年 第0期487卷 99-109页
作者: Wang, Hanchen Wang, Yining Li, Jianfeng Luo, Tao Beijing Univ Posts & Telecommun Beijing Lab Adv Informat Networks Beijing Key Lab Network Syst Architecture & Conve Beijing Peoples R China
Entity alignment, as the vital technique for knowledge graph construction and integration, aims to match entities that refer to the same real-world identity in different knowledge graphs (KGs). Recently, much effort h... 详细信息
来源: 评论
TOWARDS GEOSPATIAL knowledge graph INFUSED NEURO-SYMBOLIC AI FOR REMOTE SENSING SCENE UNDERSTANDING
TOWARDS GEOSPATIAL KNOWLEDGE GRAPH INFUSED NEURO-SYMBOLIC AI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Potnis, Abhishek Lunga, Dalton Sorokine, Alexandre Dias, Philipe Yang, Lexie Arndt, Jacob Bowman, Jordan Wohlgemuth, Jason Oak Ridge Natl Lab Geospatial Sci & Human Secur Div Oak Ridge TN 37830 USA
Deep learning has proven its effectiveness in numerous tasks for remote sensing scene understanding. However there is an increasing interest to explore fusion of domain-specific background information to the deep neur... 详细信息
来源: 评论
knowledge-embedded Prompt Learning for Zero-shot Social Media Text Classification  9
Knowledge-embedded Prompt Learning for Zero-shot Social Medi...
收藏 引用
IEEE International Conference on Smart Computing (SMARTCOMP)
作者: Li, Jingyi Chen, Qi Wang, Wei Wu, Fangyu Xian Jiaotong Liverpool Univ Sch AI & Adv Comp Suzhou Peoples R China Xian Jiaotong Liverpool Univ Dept Comp Suzhou Peoples R China Xian Jiaotong Liverpool Univ Dept Intelligent Sci Suzhou Peoples R China
Social media plays an irreplaceable role in shaping the way information is created shared and consumed. While it provides access to a vast amount of data, extracting and analyzing useful insights from complex and dyna... 详细信息
来源: 评论
Learning with cone-based geometric models and orthologics
收藏 引用
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE 2022年 第11-12期90卷 1159-1195页
作者: Leemhuis, Mena Oezcep, Ozgur L. Wolter, Diedrich Univ Lubeck Lubeck Germany Univ Bamberg Bamberg Germany
Recent approaches for knowledge-graph embeddings aim at connecting quantitative data structures used in machine learning to the qualitative structures of logics. Such embeddings are of a hybrid nature, they are data m... 详细信息
来源: 评论
Can Ensemble Calibrated Learning Enhance Link Prediction? A Study on Commonsense knowledge  15th
Can Ensemble Calibrated Learning Enhance Link Prediction? A ...
收藏 引用
15th Asian Conference on Intelligent Information and Database Systems (ACIIDS)
作者: Racharak, Teeradaj Jearanaiwongkul, Watanee Thwe, Khine Myat Japan Adv Inst Sci & Technol Sch Informat Sci Nomi Japan Asian Inst Technol Khlong Luang Thailand
Numerous prior works have shown how we can use knowledge graph embedding (KGE) models for ranking unseen facts that are likely to be true. Though these KGE models have been shown to make good performance on the rankin... 详细信息
来源: 评论
Next-Generation Security Entity Linkage: Harnessing the Power of knowledge graphs and Large Language Models  23
Next-Generation Security Entity Linkage: Harnessing the Powe...
收藏 引用
16th ACM International Systems and Storage Conference (SYSTOR)
作者: Alfasi, Daniel Shapira, Tal Bremler-Barr, Anat Reichman Univ Dept Comp Sci Herzliyya Israel Tel Aviv Univ Dept Comp Sci Tel Aviv Israel
With the continuous increase in reported Common Vulnerabilities and Exposures (CVEs), security teams are overwhelmed by vast amounts of data, which are often analyzed manually, leading to a slow and inefficient proces... 详细信息
来源: 评论
An End-to-End knowledge graph Based Question Answering Approach for COVID-19  8th
An End-to-End Knowledge Graph Based Question Answering Appro...
收藏 引用
8th Annual China Conference on Health Information Processing (CHIP)
作者: Qiao, Yinbo Yang, Zhihao Lin, Hongfei Wang, Jian Dalian Univ Technol Dalian 116024 Peoples R China
Question Answering based on knowledge graph (KG) has emerged as a popular research area in general domain. However, few works focus on the COVID-19 kg-based question answering, which is very valuable for biomedical do... 详细信息
来源: 评论
knowledge graph Representation Learning via Generated Descriptions  28th
Knowledge Graph Representation Learning via Generated Descri...
收藏 引用
28th International Conference on Applications of Natural Language to Information Systems (NLDB)
作者: Hu, Miao Lin, Zhiwei Marshall, Adele Queens Univ Belfast Sch Math & Phys Belfast Antrim North Ireland
knowledge graph representation learning (KGRL) aims to project the entities and relations into a continuous low-dimensional knowledge graph space to be used for knowledge graph completion and detecting new triples. Us... 详细信息
来源: 评论