咨询与建议

限定检索结果

文献类型

  • 312 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 574 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 539 篇 工学
    • 515 篇 计算机科学与技术...
    • 106 篇 电气工程
    • 65 篇 软件工程
    • 39 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 52 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 47 篇 理学
    • 19 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
    • 2 篇 统计学(可授理学、...
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 4 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 574 篇 knowledge graph ...
  • 143 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 31 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 12 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 567 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
574 条 记 录,以下是401-410 订阅
排序:
Modeling Temporal-Sensitive Information for Complex Question Answering over knowledge graphs  11th
Modeling Temporal-Sensitive Information for Complex Question...
收藏 引用
11th CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC)
作者: Xiao, Yao Zhou, Guangyou Liu, Jin Cent China Normal Univ Wuhan Univ Sch Comp Sci Wuhan Peoples R China
Question answering over temporal knowledge graphs (TKGQA) has attracted great attentions in natural language processing community. One of the key challenges is how to effectively model the representations of questions... 详细信息
来源: 评论
Enhancing citation recommendation using citation network embedding
收藏 引用
SCIENTOMETRICS 2022年 第1期127卷 233-264页
作者: Pornprasit, Chanathip Liu, Xin Kiattipadungkul, Pattararat Kertkeidkachorn, Natthawut Kim, Kyoung-Sook Noraset, Thanapon Hassan, Saeed-Ul Tuarob, Suppawong Mahidol Univ Fac Informat & Commun Technol Salaya Nakhon Pathom Thailand Natl Inst Adv Ind Sci & Technol Tokyo Japan Manchester Metropolitan Univ Dept Comp & Math Manchester Lancs England
Automatic recommendation of citations has been a focal point of research in scholarly digital libraries. Many graph-based citation recommendation algorithms have been proposed;however, most of them utilize local citat... 详细信息
来源: 评论
Comprehensive Analysis of Freebase and Dataset Creation for Robust Evaluation of knowledge graph Link Prediction Models  1
收藏 引用
22nd International Semantic Web Conference (ISWC)
作者: Shirvani-Mahdavi, Nasim Akrami, Farahnaz Saeef, Mohammed Samiul Shi, Xiao Li, Chengkai Univ Texas Arlington Arlington TX 76019 USA
Freebase is amongst the largest public cross-domain knowledge graphs. It possesses three main data modeling idiosyncrasies. It has a strong type system;its properties are purposefully represented in reverse pairs;and ... 详细信息
来源: 评论
A knowledge graph-based Clustering Approach for Drug Side Effects Prediction
A Knowledge Graph-based Clustering Approach for Drug Side Ef...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Zheng, Ying Xu, ShiBo Changsha University of Science & Technology School of Computer & Communication Engineering Changsha China
Research on drug side effects contributes to reducing health risks for patients and decreasing drug development costs. In recent years, machine learning methods have emerged as prominent tools to support analyzing and... 详细信息
来源: 评论
AMD Results for OAEI 2023  18
AMD Results for OAEI 2023
收藏 引用
18th International Workshop on Ontology Matching, OM 2023
作者: Wang, Zhu ADVIS Lab. Dept of Computer Science University of Illinois at Chicago ChicagoIL60607 United States
AgreementMakerDeep (AMD) is a new flexible and extensible ontology matching system. It exploits the contextual and structural information of ontologies by infusing knowledge to pre-trained masked language model, and t... 详细信息
来源: 评论
SAMI: A Structure-Aware Multi-Partition embedding Interaction Model for Accurate Link Prediction in knowledge graphs
SAMI: A Structure-Aware Multi-Partition Embedding Interactio...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Gao, Shuai Li, Ming Zhao, Jing Shi, Junkang Jinan China College of Intelligence and Information Engineering Shandong University of Traditional Chinese Medicine Jinan China
knowledge graph embedding (KGE), which applies representation learning to represent entities and relationships in knowledge graphs, has attracted significant attention from researchers due to its potential application... 详细信息
来源: 评论
Contextualized Structural Self-supervised Learning for Ontology Matching  18
Contextualized Structural Self-supervised Learning for Ontol...
收藏 引用
18th International Workshop on Ontology Matching, OM 2023
作者: Wang, Zhu Department of Computer Science University of Illinois at Chicago ChicagoIL60607 United States
Ontology matching (OM) entails the identification of semantic relationships between concepts within two or more knowledge graphs (KGs) and serves as a critical step in integrating KGs from various sources. Recent adva... 详细信息
来源: 评论
Fantastic knowledge graph embeddings and How to Find the Right Space for Them  19th
Fantastic Knowledge Graph Embeddings and How to Find the Rig...
收藏 引用
19th International Semantic Web Conference (ISWC)
作者: Nayyeri, Mojtaba Xu, Chengjin Vahdati, Sahar Vassilyeva, Nadezhda Sallinger, Emanuel Yazdi, Hamed Shariat Lehmann, Jens Univ Bonn Smart Data Analyt Grp SDA Bonn Germany InfAI Dresden Lab Dresden Germany Univ Oxford Oxford England TU Wien Vienna Austria Fraunhofer IAIS Dresden Lab Dresden Germany
During the last few years, several knowledge graph embedding models have been devised in order to handle machine learning problems for knowledge graphs. Some of the models which were proven to be capable of inferring ... 详细信息
来源: 评论
Introducing RezoJDM16k: a French knowledge graph DataSet for Link Prediction  13
Introducing RezoJDM16k: a French Knowledge Graph DataSet for...
收藏 引用
13th International Conference on Language Resources and Evaluation (LREC)
作者: Mirzapour, Mehdi Ragheb, Waleed Saeedizade, Mohammad Javad Cousot, Kevin Jacquenet, Helene Carbon, Lawrence Lafourcade, Mathieu ContentSide R&D Dept Lyon France Univ Montpellier LIRMM CNRS Montpellier France IUST Tehran Iran Emvista R&D Dept Montpellier France Cairo Univ FCAI Cairo Egypt
knowledge graphs applications, in industry and academia, motivate substantial research directions towards large-scale information extraction from various types of resources. Nowadays, most of the available knowledge g... 详细信息
来源: 评论
Learning Context-based embeddings for knowledge graph Completion
收藏 引用
Journal of Data and Information Science 2022年 第2期7卷 84-106页
作者: Fei Pu Zhongwei Zhang Yan Feng Bailin Yang School of Computer and Information Engineering Zhejiang Gongshang University Hangzhou 310018China
Purpose:Due to the incompleteness nature of knowledge graphs(KGs),the task of predicting missing links between entities becomes *** previous approaches are static,this posed a notable problem that all meanings of a po... 详细信息
来源: 评论