咨询与建议

限定检索结果

文献类型

  • 308 篇 期刊文献
  • 260 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 511 篇 计算机科学与技术...
    • 104 篇 电气工程
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 17 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 569 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 30 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 563 篇 英文
  • 6 篇 其他
检索条件"主题词=Knowledge Graph embedding"
569 条 记 录,以下是471-480 订阅
排序:
Auto Insurance knowledge graph Construction and Its Application to Fraud Detection  10
Auto Insurance Knowledge Graph Construction and Its Applicat...
收藏 引用
10th International Joint Conference on knowledge graphs (IJCKG)
作者: Zhang, Long Wu, Tianxing Chen, Xiuqi Lu, Bingjie Na, Chongning Qi, Guilin Zhejiang Lab Hangzhou Peoples R China Southeast Univ Nanjing Peoples R China
In recent years, feature engineering based machine learning models have made great progress in auto insurance fraud detection. However, their performance on single fraud case detection has never reached to a high leve... 详细信息
来源: 评论
PRRL: Path Rotation based knowledge graph Representation Learning method  8
PRRL: Path Rotation based Knowledge Graph Representation Lea...
收藏 引用
8th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)
作者: Bai, Changhao Wu, Peng Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai Peoples R China
knowledge graph (KG) representation learning aims at embedding triples in the form of vectors. Their semantic similarity can be expressed through the distance of those vectors, and thus easily be computed for further ... 详细信息
来源: 评论
Bridging Text Space and knowledge Space via Transference Methods  33
Bridging Text Space and Knowledge Space via Transference Met...
收藏 引用
IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Liu, Ming Wang, Bo Gao, Qiang Zhang, Li Lin, Xingchen Lang, Bo Beihang Univ Natl Comp Network Emergency Response Tech Team Coordinat Ctr China Beijing Peoples R China Beijing Informat Sci & Technol Univ Sch Publ Adm & Commun Beijing Peoples R China Beihang Univ State Key Lab Software Dev Environm Beijing Peoples R China
Introducing the words of texts, entities, and relations of a knowledge graph (KG) into the same semantic space has great significance in KG complement and knowledge computing. Current methods mainly utilize the "... 详细信息
来源: 评论
AliCoCo2: Commonsense knowledge Extraction, Representation and Application in E-commerce  21
<i>AliCoCo2</i>: Commonsense Knowledge Extraction, Represent...
收藏 引用
27th ACM SIGKDD International Conference on knowledge Discovery and Data Mining (KDD)
作者: Luo, Xusheng Bo, Le Wu, Jinhang Li, Lin Luo, Zhiy Yang, Yonghua Yang, Keping Alibaba Grp Hangzhou Peoples R China
Commonsense knowledge used by humans while doing online shopping is valuable but difficult to be captured by existing systems running on e-commerce platforms. While construction of commonsense knowledge graphs in e-co... 详细信息
来源: 评论
A shallow neural model for relation prediction  15
A shallow neural model for relation prediction
收藏 引用
15th IEEE International Conference on Semantic Computing (ICSC)
作者: Demir, Caglar Moussallem, Diego Ngomo, Axel-Cyrille Ngonga Paderborn Univ Data Sci Grp North Rhine Westphalia Germany
knowledge graph completion refers to predicting missing triples. Most approaches achieve this goal by predicting entities, given an entity and a relation. We predict missing triples via the relation prediction. To thi... 详细信息
来源: 评论
Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings
收藏 引用
knowledge-BASED SYSTEMS 2020年 190卷 105165-105165页
作者: Dai, Yuanfei Wang, Shiping Chen, Xing Xu, Chaoyang Guo, Wenzhong Fuzhou Univ Coll Math & Comp Sci Fuzhou 350116 Peoples R China Fuzhou Univ Key Lab Network Comp & Intelligent Informat Proc Fuzhou 350116 Peoples R China Putian Univ Sch Informat Engn Putian 351100 Peoples R China
knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly cons... 详细信息
来源: 评论
FedE: embedding knowledge graphs in Federated Setting  10
FedE: Embedding Knowledge Graphs in Federated Setting
收藏 引用
10th International Joint Conference on knowledge graphs (IJCKG)
作者: Chen, Mingyang Zhang, Wen Yuan, Zonggang Jia, Yantao Chen, Huajun Zhejiang Univ Hangzhou Peoples R China Huawei Technol Co Ltd Shenzhen Peoples R China AZFT Joint Lab Knowledge Engine Hangzhou Peoples R China
knowledge graphs (KGs) become widespread and many organizations construct as well as maintain their own knowledge graphs. Same as the data isolation which has been a long-standing problem, knowledge graph isolation is... 详细信息
来源: 评论
Meta-Learning Based Hyper-Relation Feature Modeling for Out-of-knowledge-Base embedding  21
Meta-Learning Based Hyper-Relation Feature Modeling for Out-...
收藏 引用
30th ACM International Conference on Information and knowledge Management (CIKM)
作者: Zhang, Yufeng Wang, Weiqing Chen, Wei Xu, Jiajie Liu, An Zhao, Lei Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China Monash Univ Dept Data Sci & AI Melbourne Australia
knowledge graph (KG) embedding aims to encode both entities and relations into a continuous vector space. Most existing methods require that all entities should be observed during training while ignoring the evolving ... 详细信息
来源: 评论
MQuadE: a Unified Model for knowledge Fact embedding  21
MQuadE: a Unified Model for Knowledge Fact Embedding
收藏 引用
30th World Wide Web Conference (WWW)
作者: Yu, Jinxing Cai, Yunfeng Sun, Mingming Li, Ping Baidu Res 10 Xibeiwang East Rd Beijing 100193 Peoples R China Baidu Res Cognit Comp Lab 10900 NE 8th St Bellevue WA 98004 USA
The task of knowledge graph embedding (KGE) tries to find appropriate representations for entities and relations and appropriate mathematical computations between the representations to approximate the symbolic and lo... 详细信息
来源: 评论
Mixed-Curvature Multi-Relational graph Neural Network for knowledge graph Completion  21
Mixed-Curvature Multi-Relational Graph Neural Network for Kn...
收藏 引用
30th World Wide Web Conference (WWW)
作者: Wang, Shen Wei, Xiaokai dos Santos, Cicero Nogueira Wang, Zhiguo Nallapati, Ramesh Arnold, Andrew Xiang, Bing Yu, Philip S. Cruz, Isabel F. Univ Illinois Chicago IL 60607 USA AWS AI Seattle WA USA
knowledge graphs (KGs) have gradually become valuable assets for many AI applications. In a KG, a node denotes an entity, and an edge (or link) denotes a relationship between the entities represented by the nodes. Kno... 详细信息
来源: 评论