咨询与建议

限定检索结果

文献类型

  • 308 篇 期刊文献
  • 260 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 511 篇 计算机科学与技术...
    • 104 篇 电气工程
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 17 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 569 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 30 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 563 篇 英文
  • 6 篇 其他
检索条件"主题词=Knowledge Graph embedding"
569 条 记 录,以下是481-490 订阅
排序:
Relation-Aware Neighborhood Aggregation for Cross-lingual Entity Alignment  24
Relation-Aware Neighborhood Aggregation for Cross-lingual En...
收藏 引用
24th IEEE International Conference on Information Fusion (FUSION)
作者: Liu, Yuanna Geng, Jie Deng, Xinyang Jiang, Wen Northwestern Polytech Univ Sch Elect & Informat Xian Peoples R China
Cross-lingual entity alignment refers to linking entities in different language knowledge graphs if they are of identical meaning. Recent works focus on learning structure information of knowledge graphs and calculate... 详细信息
来源: 评论
knowledge-enhanced Spherical Representation Learning for Text Classification
Knowledge-enhanced Spherical Representation Learning for Tex...
收藏 引用
SIAM International Conference on Data Mining (SDM)
作者: Ennajari, Hafsa Bouguila, Nizar Bentahar, Jamal Concordia Univ Concordia Inst Informat Syst Engn CIISE Montreal PQ H3G 1M8 Canada
We introduce knowledge-enhanced Spherical Representation Learning (K-SRL), a generative probabilistic model of text documents that combines word embeddings and knowledge graph embeddings to effectively encode the sema... 详细信息
来源: 评论
AR-BERT: Aspect-relation enhanced Aspect-level Sentiment Classification with Multi-modal Explanations  22
AR-BERT: Aspect-relation enhanced Aspect-level Sentiment Cla...
收藏 引用
31st ACM Web Conference (WWW)
作者: Islam, Sk Mainul Bhattacharya, Sourangshu IIT Kharagpur Kharagpur W Bengal India
Aspect level sentiment classification (ALSC) is a difficult problem with state-of-the-art models showing less than 80% macro-F1 score on benchmark datasets. Existing models do not incorporate information on aspect-asp... 详细信息
来源: 评论
Loan Default Risk Prediction Using knowledge graph  14
Loan Default Risk Prediction Using Knowledge Graph
收藏 引用
14th International Conference on knowledge and Smart Technology (KST)
作者: Alam, Md Nurul Ali, Muhammad Masroor Bangladesh Univ Engn & Technol Dept Comp Sci & Engn Dhaka Bangladesh
Credit risk, also known as loan default risk, is one of the significant financial challenges in banking and financial institutions since it involves the uncertainty of the borrowers' ability to perform their contr... 详细信息
来源: 评论
Next-Generation Security Entity Linkage: Harnessing the Power of knowledge graphs and Large Language Models  23
Next-Generation Security Entity Linkage: Harnessing the Powe...
收藏 引用
16th ACM International Systems and Storage Conference (SYSTOR)
作者: Alfasi, Daniel Shapira, Tal Bremler-Barr, Anat Reichman Univ Dept Comp Sci Herzliyya Israel Tel Aviv Univ Dept Comp Sci Tel Aviv Israel
With the continuous increase in reported Common Vulnerabilities and Exposures (CVEs), security teams are overwhelmed by vast amounts of data, which are often analyzed manually, leading to a slow and inefficient proces... 详细信息
来源: 评论
An End-to-End knowledge graph Based Question Answering Approach for COVID-19  8th
An End-to-End Knowledge Graph Based Question Answering Appro...
收藏 引用
8th Annual China Conference on Health Information Processing (CHIP)
作者: Qiao, Yinbo Yang, Zhihao Lin, Hongfei Wang, Jian Dalian Univ Technol Dalian 116024 Peoples R China
Question Answering based on knowledge graph (KG) has emerged as a popular research area in general domain. However, few works focus on the COVID-19 kg-based question answering, which is very valuable for biomedical do... 详细信息
来源: 评论
Self-learning and embedding Based Entity Alignment
Self-learning and Embedding Based Entity Alignment
收藏 引用
IEEE International Conference on Big knowledge (IEEE ICBK)
作者: Guan, Saiping Jin, Xiaolong Jia, Yantao Wang, Yuanzhuo Shen, Huawei Cheng, Xueqi Chinese Acad Sci Univ Chinese Acad Sci Sch Comp & Control Engn Inst Comp TechnolCAS Key Lab Network Data Sci & Beijing Peoples R China
Entity alignment aims to identify semantical matchings between entities from different groups. Traditional methods (e. g., attribute comparison based methods, clustering based methods, and active learning methods) are... 详细信息
来源: 评论
knowledge graph Representation Learning via Generated Descriptions  28th
Knowledge Graph Representation Learning via Generated Descri...
收藏 引用
28th International Conference on Applications of Natural Language to Information Systems (NLDB)
作者: Hu, Miao Lin, Zhiwei Marshall, Adele Queens Univ Belfast Sch Math & Phys Belfast Antrim North Ireland
knowledge graph representation learning (KGRL) aims to project the entities and relations into a continuous low-dimensional knowledge graph space to be used for knowledge graph completion and detecting new triples. Us... 详细信息
来源: 评论
Distributed representation learning of knowledge graph with diverse information  9
Distributed representation learning of knowledge graph with ...
收藏 引用
9th International Conference on Parallel Architectures, Algorithms and Programming (PAAP)
作者: Guo, Wenzhong Dai, Yuanfei Chen, Yiyan Chen, Xing Xiong, Neal N. Fuzhou Univ Coll Math & Comp Sci Fuzhou Fujian Peoples R China Fuzhou Univ Key Lab Network Comp & Intelligent Informat Proc Fuzhou Fujian Peoples R China Northeastern State Univ Dept Math & Comp Sci Tahlequah OK USA
knowledge graph is a type of network structure in which nodes represent entities and edges indicate relations. However, as the network size explosively increases, the issues of data sparsity and computation inefficien... 详细信息
来源: 评论
Relational Learning with Hierarchical Attention Encoder and Recoding Validator for Few-Shot knowledge graph Completion  22
Relational Learning with Hierarchical Attention Encoder and ...
收藏 引用
37th Annual ACM Symposium on Applied Computing
作者: Yuan, Xu Xu, Chengchuan Li, Peng Chen, Zhikui Dalian Univ Technol Dalian Peoples R China
Few-shot knowledge graph complementation (FKGC) has gained broad interest, where each task aims to complete missing facts of the long tail relations by few-shot support instances in the knowledge graph (KG). Most prev... 详细信息
来源: 评论