咨询与建议

限定检索结果

文献类型

  • 308 篇 期刊文献
  • 260 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 511 篇 计算机科学与技术...
    • 104 篇 电气工程
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 17 篇 数学
    • 13 篇 生物学
    • 9 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 25 篇 医学
    • 15 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 1 篇 教育学

主题

  • 569 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 64 篇 knowledge graph ...
  • 35 篇 representation l...
  • 30 篇 knowledge graphs
  • 25 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 13 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 computational mo...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 graph convolutio...
  • 10 篇 knowledge engine...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 li guanyu
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 563 篇 英文
  • 6 篇 其他
检索条件"主题词=Knowledge Graph embedding"
569 条 记 录,以下是501-510 订阅
排序:
Efficient Parallel Translating embedding For knowledge graphs  17
Efficient Parallel Translating Embedding For Knowledge Graph...
收藏 引用
IEEE/WIC/ACM International Conference on Web Intelligence (WI)
作者: Zhang, Denghui Li, Manling Jia, Yantao Wang, Yuanzhuo Cheng, Xueqi Chinese Acad Sci Inst Comp Technol 6 Kexueyuan South Rd Beijing 100190 Peoples R China
knowledge graph embedding aims to embed entities and relations of knowledge graphs into low-dimensional vector spaces. Translating embedding methods regard relations as the translation from head entities to tail entit... 详细信息
来源: 评论
Relation embedding for Personalised Translation-Based POI Recommendation  24th
Relation Embedding for Personalised Translation-Based POI Re...
收藏 引用
24th Pacific-Asia Conference on knowledge Discovery and Data Mining (PAKDD)
作者: Wang, Xianjing Salim, Flora D. Ren, Yongli Koniusz, Piotr RMIT Univ Melbourne Vic Australia CSIRO Data61 Canberra ACT Australia Australian Natl Univ Canberra ACT Australia
Point-of-Interest (POI) recommendation is one of the most important location-based services helping people discover interesting venues or services. However, the extreme user-POI matrix sparsity and the varying spatio-... 详细信息
来源: 评论
LiterallyWikidata - A Benchmark for knowledge graph Completion Using Literals  20th
LiterallyWikidata - A Benchmark for Knowledge Graph Completi...
收藏 引用
20th International Semantic Web Conference (ISWC)
作者: Gesese, Genet Asefa Alam, Mehwish Sack, Harald FIZ Karlsruhe Leibniz Inst Informat Infrastruct Eggenstein Leopoldshafen Germany Karlsruhe Inst Technol Inst AIFB Karlsruhe Germany
In order to transform a knowledge graph (KG) into a low dimensional vector space, it is beneficial to preserve as much semantics as possible from the different components of the KG. Hence, some link prediction approac... 详细信息
来源: 评论
A knowledge graph Question Answering Approach Based on graph Attention Networks and Relational Path Encoding  20th
A Knowledge Graph Question Answering Approach Based on Graph...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Cao, Shuxin Zhu, Xiaoxu Li, Peifeng Soochow Univ Suzhou 215026 Peoples R China
Most of the previous knowledge graph question answering (KGQA) methods focus on question parsing and ignore the knowledge graph information. In order to improve the utilization of knowledge graph structure information... 详细信息
来源: 评论
Representing knowledge graphs with Gaussian Mixture embedding  14th
Representing Knowledge Graphs with Gaussian Mixture Embeddin...
收藏 引用
14th International Conference on knowledge Science, Engineering, and Management (KSEM)
作者: Feng, Wenying Zha, Daren Guo, Xiaobo Dong, Yao He, Yuanye Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
knowledge graph embedding (KGE) has attracted more and more attention and has been widely used in downstream AI tasks. Some proposed models learn the embeddings of knowledge graph (KG) into a low-dimensional continuou... 详细信息
来源: 评论
Neural-Answering Logical Queries on knowledge graphs  21
Neural-Answering Logical Queries on Knowledge Graphs
收藏 引用
27th ACM SIGKDD International Conference on knowledge Discovery and Data Mining (KDD)
作者: Liu, Lihui Du, Boxin Ji, Heng Zhai, ChengXiang Tong, Hanghang Univ Illinois Dept Comp Sci Champaign IL 61820 USA
Logical queries constitute an important subset of questions posed in knowledge graph question answering systems. Yet, effectively answering logical queries on large knowledge graphs remains a highly challenging proble... 详细信息
来源: 评论
Entity Alignment Across knowledge graphs Based on Representative Relations Selection  5
Entity Alignment Across Knowledge Graphs Based on Representa...
收藏 引用
5th International Conference on Systems and Informatics (ICSAI)
作者: Zhang, Youmin Liu, Li Fu, Shun Zhong, Fujin Chongqing Inst Engn Sch Software Chongqing Peoples R China Chongqing Univ Posts & Telecommun Coll Comp Sci & Technol Chongqing Peoples R China
Entity alignment across knowledge graphs is an important task in web mining. The aligned entities can be used for transferring knowledge across knowledge graphs and benefit several tasks such as cross-lingual knowledg... 详细信息
来源: 评论
embedding Dynamic knowledge graphs based on Observational Ontologies in Semantic Vector Spaces
Embedding Dynamic Knowledge Graphs based on Observational On...
收藏 引用
Conference on Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III
作者: Millar, Declan Braines, Dave D'Arcy, Laura Barclay, Iain Summers-Stay, Doug Cripps, Paul IBM Res Europe Hursley England Cardiff Univ Sch Comp Sci & Informat Cardiff Wales US Army Res Lab Adelphi MD USA Def Sci & Technol Lab Salisbury Wilts England
knowledge graphs (KGs) provide a useful representation format for capturing complex knowledge about an information domain, with rich logical descriptions available for defining the relationships between entities. Sepa... 详细信息
来源: 评论
Comprehensive Analysis of Freebase and Dataset Creation for Robust Evaluation of knowledge graph Link Prediction Models  1
收藏 引用
22nd International Semantic Web Conference (ISWC)
作者: Shirvani-Mahdavi, Nasim Akrami, Farahnaz Saeef, Mohammed Samiul Shi, Xiao Li, Chengkai Univ Texas Arlington Arlington TX 76019 USA
Freebase is amongst the largest public cross-domain knowledge graphs. It possesses three main data modeling idiosyncrasies. It has a strong type system;its properties are purposefully represented in reverse pairs;and ... 详细信息
来源: 评论
AMD Results for OAEI 2023  18
AMD Results for OAEI 2023
收藏 引用
18th International Workshop on Ontology Matching, OM 2023
作者: Wang, Zhu ADVIS Lab. Dept of Computer Science University of Illinois at Chicago ChicagoIL60607 United States
AgreementMakerDeep (AMD) is a new flexible and extensible ontology matching system. It exploits the contextual and structural information of ontologies by infusing knowledge to pre-trained masked language model, and t... 详细信息
来源: 评论