咨询与建议

限定检索结果

文献类型

  • 304 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 566 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 531 篇 工学
    • 510 篇 计算机科学与技术...
    • 103 篇 电气工程
    • 66 篇 软件工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 交通运输工程
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 18 篇 数学
    • 13 篇 生物学
    • 8 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 24 篇 医学
    • 14 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 566 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 63 篇 knowledge graph ...
  • 34 篇 representation l...
  • 29 篇 knowledge graphs
  • 23 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 12 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 computational mo...
  • 10 篇 knowledge engine...
  • 10 篇 recommender syst...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 li guanyu
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 559 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
566 条 记 录,以下是541-550 订阅
排序:
Translational relation embeddings for multi-hop knowledge base question answering
收藏 引用
JOURNAL OF WEB SEMANTICS 2022年 第0期74卷
作者: Li, Ziyan Wang, Haofen Zhang, Wenqiang Fudan Univ Acad Engn & Technol Shanghai Peoples R China Tongji Univ Coll Design & Innovat Shanghai Peoples R China
Multi-hop knowledge Base Question Answering (KBQA) aims to predict answers that require multi-hop reasoning from the topic entity in the question over the knowledge Base (KB). Relation extraction is a core step in KBQ... 详细信息
来源: 评论
Multi-perspective knowledge graph completion with global and interaction features
收藏 引用
INFORMATION SCIENCES 2024年 666卷
作者: Li, Duantengchuan Shi, Fobo Wang, Xiaoguang Zheng, Chao Cai, Yuefeng Li, Bing Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China Cent China Normal Univ Natl Engn Res Ctr Elearning Wuhan 430079 Peoples R China Wuhan Univ Sch Informat Management Wuhan 430072 Peoples R China ZTE Corp Shenzhen 518057 Peoples R China Hubei Luojia Lab Wuhan 430079 Peoples R China
knowledge graphs are multi -relation heterogeneous graphs. Thus, the existence of numerous multi -relation entities imposes a tough challenge to the modelling of the knowledge graph. Some recent works represent the pr... 详细信息
来源: 评论
Causality-aware Enhanced Model for Multi-hop Question Answering over knowledge graphs
收藏 引用
knowledge-BASED SYSTEMS 2022年 250卷
作者: Sui, Yuan Feng, Shanshan Zhang, Huaxiang Cao, Jian Hu, Liang Zhu, Nengjun Shandong Normal Univ Sch Informat Sci & Engn Jinan Peoples R China Shandong JiaoTong Univ Jinan Peoples R China Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai Peoples R China Tongji Univ DeepBlue Acad Sci Sch Elect & Informat Engn Shanghai Peoples R China DeepBlue Acad Sci Shanghai Peoples R China Shanghai Univ Sch Comp Engn & Sci Shanghai Peoples R China
To improve the performance of knowledge graph-based question answering system (KGQA), several approaches have been developed to construct a semantic parser based on entity linking, relation identification and logical/... 详细信息
来源: 评论
Relagraph: Improving embedding on small-scale sparse knowledge graphs by neighborhood relations
收藏 引用
INFORMATION PROCESSING & MANAGEMENT 2023年 第5期60卷
作者: Shi, Bin Wang, Hao Li, Yueyan Deng, Sanhong Nanjing Univ Sch Informat Management Nanjing 210023 Peoples R China Jiangsu Key Lab Data Engn & Knowledge Serv Nanjing 210023 Peoples R China
Learning a continuous dense low-dimensional representation of knowledge graphs (KGs), known as knowledge graph embedding (KGE), has been viewed as the key to intelligent reasoning for deep learning (DL) and gained muc... 详细信息
来源: 评论
An radicals construction technique based on dual quaternions and hierarchical transformers
收藏 引用
NEUROCOMPUTING 2024年 604卷
作者: Zhang, Sensen Liang, Xun Renmin Univ China Sch Informat Beijing 100872 Peoples R China
At present, the exploration of knowledge graph embedding (KGE) mainly focuses on static KGE models. Due to the diversity and complexity of vertical domain data, it is difficult for existing KGE models to achieve excel... 详细信息
来源: 评论
Hic-KGQA: Improving multi-hop question answering over knowledge graph via hypergraph and inference chain
收藏 引用
knowledge-BASED SYSTEMS 2023年 第1期277卷
作者: Wang, Jingchao Li, Weimin Liu, Fangfang Sheng, Bin Liu, Wei Jin, Qun Shanghai Univ Sch Comp Engn & Sci Shanghai 200000 Peoples R China Waseda Univ Fac Human Sci Tokorozawa 3591192 Japan
Question answering over knowledge graph (KGQA) aims at answering natural language questions posed over knowledge graphs (KGs). Moreover, multi-hop KGQA requires reasoning across multiple triplets in KGs to get to the ... 详细信息
来源: 评论
Towards assessing the quality of knowledge graphs via differential testing
收藏 引用
INFORMATION AND SOFTWARE TECHNOLOGY 2024年 174卷
作者: Tan, Jiajun Wang, Dong Sun, Jingyu Liu, Zixi Li, Xiaoruo Feng, Yang Nanjing Univ Nanjing Peoples R China Henan Univ Kaifeng Henan Peoples R China
knowledge graphs (KG) can aggregate data and make information resources easier to calculate and understand. With tremendous advancements in knowledge graphs, they have been incorporated into plenty of software systems... 详细信息
来源: 评论
knowledge graph fact prediction via knowledge-enriched tensor factorization
收藏 引用
JOURNAL OF WEB SEMANTICS 2019年 59卷 100497-100497页
作者: Padia, Ankur Kalpakis, Kostantinos Ferraro, Francis Finin, Tim Univ Maryland Baltimore Cty Baltimore MD 21228 USA
We present a family of novel methods for embedding knowledge graphs into real-valued tensors. These tensor-based embeddings capture the ordered relations that are typical in the knowledge graphs represented by semanti... 详细信息
来源: 评论
Representation learning for dynamic graphs: a survey
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 2648-2720页
作者: Seyed Mehran Kazemi Rishab Goel Kshitij Jain Ivan Kobyzev Akshay Sethi Peter Forsyth Pascal Poupart Borealis AI Montreal QC Canada Borealis AI Waterloo ON Canada
graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly... 详细信息
来源: 评论
Decentralized Federated Learning-Enabled Relation Aggregation for Anomaly Detection
收藏 引用
INFORMATION 2023年 第12期14卷 647-647页
作者: Shuai, Siyue Hu, Zehao Zhang, Bin Liaqat, Hannan Bin Kong, Xiangjie Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China Zhejiang Yuexiu Univ Foreign Language Coll Digital Commerce Shaoxing 312000 Peoples R China Univ Educ IT Dept Informat Sci Div Sci & Technol Township Campus Lahore 54000 Pakistan
Anomaly detection plays a crucial role in data security and risk management across various domains, such as financial insurance security, medical image recognition, and Internet of Things (IoT) device management. Rese... 详细信息
来源: 评论