咨询与建议

限定检索结果

文献类型

  • 304 篇 期刊文献
  • 261 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 566 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 531 篇 工学
    • 510 篇 计算机科学与技术...
    • 103 篇 电气工程
    • 66 篇 软件工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
    • 2 篇 仪器科学与技术
    • 2 篇 交通运输工程
  • 51 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 3 篇 公共管理
  • 45 篇 理学
    • 18 篇 数学
    • 13 篇 生物学
    • 8 篇 物理学
    • 6 篇 系统科学
    • 4 篇 地理学
    • 3 篇 化学
    • 2 篇 地球物理学
  • 24 篇 医学
    • 14 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 6 篇 文学
    • 5 篇 外国语言文学
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 566 篇 knowledge graph ...
  • 142 篇 link prediction
  • 90 篇 knowledge graph
  • 63 篇 knowledge graph ...
  • 34 篇 representation l...
  • 29 篇 knowledge graphs
  • 23 篇 semantics
  • 20 篇 entity alignment
  • 17 篇 task analysis
  • 17 篇 attention mechan...
  • 15 篇 graph neural net...
  • 14 篇 deep learning
  • 14 篇 predictive model...
  • 12 篇 negative samplin...
  • 12 篇 graph neural net...
  • 12 篇 machine learning
  • 12 篇 convolutional ne...
  • 11 篇 computational mo...
  • 10 篇 knowledge engine...
  • 10 篇 recommender syst...

机构

  • 17 篇 chinese acad sci...
  • 12 篇 univ chinese aca...
  • 12 篇 univ chinese aca...
  • 10 篇 univ sci fac inf...
  • 9 篇 wuhan univ sch c...
  • 9 篇 vietnam natl uni...
  • 7 篇 hefei univ techn...
  • 7 篇 southeast univ s...
  • 7 篇 univ mannheim da...
  • 6 篇 zhejiang univ co...
  • 5 篇 zhejiang univ pe...
  • 5 篇 alibaba grp peop...
  • 5 篇 peng cheng lab p...
  • 5 篇 shanghai univ sc...
  • 4 篇 univ queensland ...
  • 4 篇 soochow univ sch...
  • 4 篇 bosch ctr ai ren...
  • 4 篇 beihang univ sch...
  • 4 篇 harbin inst tech...
  • 4 篇 huawei technol c...

作者

  • 11 篇 zhang wen
  • 9 篇 chen huajun
  • 9 篇 jia yantao
  • 8 篇 paulheim heiko
  • 7 篇 cheng xueqi
  • 7 篇 thanh le
  • 7 篇 bac le
  • 7 篇 wang yuanzhuo
  • 7 篇 wang meng
  • 6 篇 li zhifei
  • 6 篇 wang ronggui
  • 6 篇 li guanyu
  • 6 篇 yang juan
  • 6 篇 xue lixia
  • 5 篇 liu jun
  • 5 篇 wang tao
  • 5 篇 zhang wensheng
  • 5 篇 guo xiaobo
  • 5 篇 sun zhengya
  • 5 篇 wang bin

语言

  • 559 篇 英文
  • 7 篇 其他
检索条件"主题词=Knowledge Graph embedding"
566 条 记 录,以下是61-70 订阅
排序:
Enhancing knowledge graph embedding by composite neighbors for link prediction
收藏 引用
COMPUTING 2020年 第12期102卷 2587-2606页
作者: Wang, Kai Liu, Yu Xu, Xiujuan Sheng, Quan Z. Dalian Univ Technol Sch Software Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116023 Peoples R China Macquarie Univ Dept Comp Sydney NSW 2109 Australia
knowledge graph embedding (KGE) aims to represent entities and relations in a low-dimensional continuous vector space. Recent KGE works focus on incorporating additional information, such as local neighbors and textua... 详细信息
来源: 评论
A lightweight CNN-based knowledge graph embedding model with channel attention for link prediction
收藏 引用
MATHEMATICAL BIOSCIENCES AND ENGINEERING 2023年 第6期20卷 9607-9624页
作者: Zhou, Xin Guo, Jingnan Jiang, Liling Ning, Bo Wang, Yanhao Dalian Maritime Univ Sch Informat Sci & Technol Dalian 116026 Peoples R China East China Normal Univ Sch Data Sci & Engn Shanghai 200062 Peoples R China
knowledge graph (KG) embedding is to embed the entities and relations of a KG into a low-dimensional continuous vector space while preserving the intrinsic semantic associations between entities and relations. One of ... 详细信息
来源: 评论
Two flexible translation-based models for knowledge graph embedding
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023年 第2期44卷 3093-3105页
作者: Li, Zepeng Huang, Rikui Zhang, Yufeng Zhu, Jianghong Hu, Bin Lanzhou Univ Sch Informat Sci & Engn Gansu Prov Key Lab Wearable Comp Lanzhou Peoples R China Beijing Inst Technol Inst Engn Med Beijing Peoples R China Chinese Acad Sci CAS Ctr Excellence Brain Sci Shanghai Inst Biol Sci Shanghai Peoples R China Chinese Acad Sci Inst Biol Sci Shanghai Inst Biol Sci Shanghai Peoples R China
knowledge graph embedding (KGE), which aims to embed the entities and relations of a knowledge graph into a low-dimensional continuous space, has been proven to be an effective method for completing a knowledge graph ... 详细信息
来源: 评论
HARPA: hierarchical attention with relation paths for knowledge graph embedding adversarial learning
收藏 引用
DATA MINING AND knowledge DISCOVERY 2023年 第2期37卷 521-551页
作者: Zhang, Naixin Wang, Jinmeng He, Jieyue Southeast Univ Sch Comp Sci & Engn Key Lab Comp Network & Informat Integrat MOE Nanjing 210018 Jiangsu Peoples R China
knowledge graph embedding (KGE) aims to map the knowledge graph into a low-dimensional continuous vector space and provide a unified underlying representation for downstream tasks. Recently, graph neural network (GNN)... 详细信息
来源: 评论
Deep hyperbolic convolutional model for knowledge graph embedding
收藏 引用
knowledge-BASED SYSTEMS 2024年 300卷
作者: Lu, Ming Li, Yancong Zhang, Jiangxiao Ren, Haiying Zhang, Xiaoming Beihang Univ Sch Cyber Sci & Technol Beijing Peoples R China Xingtai Univ Math & Informat Technol Inst Xingtai 054001 Hebei Peoples R China Beihang Univ Sch Comp Sci & Engn State Key Lab Software Dev Environm Beijing 100191 Peoples R China
Recent advancements in knowledge graph embedding have enabled the representation of entities and relations in continuous vector spaces. Performing link prediction on incomplete knowledge graphs using these embeddings ... 详细信息
来源: 评论
Convolutional Neural Network-Based Entity-Specific Common Feature Aggregation for knowledge graph embedding Learning
收藏 引用
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2024年 第1期70卷 3593-3602页
作者: Hu, Kairong Zhu, Xiaozhi Liu, Hai Qu, Yingying Wang, Fu Lee Hao, Tianyong South China Normal Univ Sch Comp Sci Guangzhou 510631 Peoples R China Guangdong Univ Foreign Studies Sch Business Guangzhou 510006 Peoples R China Hong Kong Metropolitan Univ Sch Sci & Technol Hong Kong Peoples R China
Deep learning models present impressive capability for automatic feature extraction, where common features-based aggregation have demonstrated valuable potential in improving the model performance on text classificati... 详细信息
来源: 评论
Enhancing knowledge graph embedding with type-constraint features
收藏 引用
APPLIED INTELLIGENCE 2023年 第1期53卷 984-995页
作者: Chen, Wenjie Zhao, Shuang Zhang, Xin Chinese Acad Chengdu Documentat & Informat Ctr 16South Sect 21st Ring Rd Chengdu Sichuan Peoples R China
knowledge graph (KG) embedding represents entities and relations with latent vectors, which has been widely adopted in relation extraction and KG completion. Among existing works, translation-based models treat each r... 详细信息
来源: 评论
Hyperplane-based time-aware knowledge graph embedding for temporal knowledge graph completion
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022年 第6期42卷 5457-5469页
作者: He, Peng Zhou, Gang Liu, Hongbo Xia, Yi Wang, Ling Informat Engn Univ Zhengzhou Peoples R China Zhengzhou Univ Technol Zhengzhou Peoples R China
knowledge graph (KG) embedding approaches have been proved effective to infer new facts for a KG based on the existing ones-a problem known as KG completion. However, most of them have focused on static KGs, in fact, ... 详细信息
来源: 评论
Context-Aware Service Recommendation Based on knowledge graph embedding
收藏 引用
IEEE TRANSACTIONS ON knowledge AND DATA ENGINEERING 2022年 第11期34卷 5225-5238页
作者: Mezni, Haithem Benslimane, Djamal Bellatreche, Ladjel Taibah Univ Dept Comp Informat Sci Medina 42353 Saudi Arabia Claude Bernard Univ F-69373 Lyon France Natl Engn Sch Mech & Aerotech F-86961 Poitiers France
Over two decades, context awareness has been incorporated into recommender systems in order to provide, not only the top-rated items to consumers but also the ones that are suitable to the user context. As a class of ... 详细信息
来源: 评论
Developing a BERT based triple classification model using knowledge graph embedding for question answering system
收藏 引用
APPLIED INTELLIGENCE 2022年 第1期52卷 636-651页
作者: Phuc Do Phan, Truong H., V Vietnam Natl Univ Univ Informat Technol Ho Chi Minh City Vietnam Van Lang Univ Ho Chi Minh City Vietnam
The current BERT-based question answering systems use a question and a contextual text to find the answer. This causes the systems to return wrong answers or nothing if the text contains irrelevant contents with the i... 详细信息
来源: 评论