咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 7 篇 电气工程
    • 7 篇 测绘科学与技术
    • 5 篇 计算机科学与技术...
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 光学工程
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 软件工程
  • 11 篇 理学
    • 7 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 地理学
    • 1 篇 大气科学
  • 5 篇 医学
    • 5 篇 临床医学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 理论经济学

主题

  • 19 篇 lidar data proce...
  • 3 篇 deep learning
  • 3 篇 depth completion
  • 2 篇 object detection
  • 2 篇 transformer
  • 2 篇 multispectral cl...
  • 2 篇 lidar remote sen...
  • 2 篇 point cloud clas...
  • 2 篇 background noise...
  • 2 篇 point cloud segm...
  • 2 篇 dtms/dsms
  • 2 篇 information fusi...
  • 2 篇 sensor fusion
  • 2 篇 point cloud comp...
  • 1 篇 knowledge engine...
  • 1 篇 lidar data conve...
  • 1 篇 representation l...
  • 1 篇 image matching
  • 1 篇 task analysis
  • 1 篇 three-dimensiona...

机构

  • 2 篇 eth inst geodesy...
  • 2 篇 bulgarian acad s...
  • 2 篇 univ waterloo de...
  • 2 篇 univ waterloo de...
  • 1 篇 east china norma...
  • 1 篇 east china norma...
  • 1 篇 tech univ chemni...
  • 1 篇 univ santiago de...
  • 1 篇 univ chinese aca...
  • 1 篇 natl inst enviro...
  • 1 篇 chinese acad sci...
  • 1 篇 gdansk univ tech...
  • 1 篇 univ tecn federi...
  • 1 篇 german aerosp ct...
  • 1 篇 univ calgary dep...
  • 1 篇 nanjing univ sci...
  • 1 篇 univ louisiana l...
  • 1 篇 univ technol ira...
  • 1 篇 herzogstandstr 1...
  • 1 篇 ibm res tj watso...

作者

  • 2 篇 xu linlin
  • 2 篇 li jonathan
  • 2 篇 baltsavias e.
  • 2 篇 lu dening
  • 2 篇 grigorov ivan
  • 2 篇 kolarov georgi
  • 2 篇 demir n.
  • 1 篇 navarro angeles
  • 1 篇 gao kyle
  • 1 篇 wang xiao
  • 1 篇 he jun
  • 1 篇 khanfir kallel i...
  • 1 篇 kowalik michal
  • 1 篇 wang xingguo
  • 1 篇 han jing
  • 1 篇 albrecht conrad ...
  • 1 篇 sobieraj-zlobins...
  • 1 篇 pezzutti florenc...
  • 1 篇 medhioub mouna
  • 1 篇 zhu ming

语言

  • 19 篇 英文
检索条件"主题词=LIDAR Data Processing"
19 条 记 录,以下是1-10 订阅
排序:
Determination of the potential of solar energy, solar plant design, and grid integration based on lidar data processing in northern border region
收藏 引用
JOURNAL OF OPTICS-INDIA 2024年 第3期53卷 2142-2150页
作者: Azzahrani, Ahmad Salih Kadhim, Ahmed Chyad Northern Border Univ Dept Elect Engn ArarKSA Saudi Arabia Univ Technol Iraq Dept Laser & Optoelectron Engn Baghdad Iraq
This proposal introduces advancements in the state-of-the-art solar energy industry by using lidar-based location characterization. The distribution of solar energy across the northern border region is highlighted usi... 详细信息
来源: 评论
CPU and GPU oriented optimizations for lidar data processing
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2024年 79卷
作者: Munoz, Felipe Asenjo, Rafael Navarro, Angeles Cabaleiro, J. Carlos Univ Malaga Dept Comp Architecture Bulevar Louis Pasteur 35 Malaga Spain Univ Santiago De Compostela Ctr Singular Invest Tecnol Intelixentes CiTIUS Dept Elect & Comp Santiago De Compostela Spain
Digital Terrain Models (DTM) can be accurately obtained from clouds of lidar points but the corresponding cloud processing time can be prohibitive. This paper describes several optimization techniques that have been a... 详细信息
来源: 评论
Advancing Trans-Domain Classification With Knowledge Distillation: Bridging lidar and Image data
收藏 引用
IEEE ACCESS 2025年 13卷 20574-20583页
作者: Ortiz, Jesus Eduardo Creixell, Werner Univ Tecn Federico Santa Maria Dept Elect Valparaiso 2390123 Chile
Recent advancements in deep learning have significantly improved image classification models, yet extending these models to alternative data forms, such as point clouds from Light Detection and Ranging (lidar) sensors... 详细信息
来源: 评论
A lightweight depth completion network with spatial efficient fusion
收藏 引用
IMAGE AND VISION COMPUTING 2025年 153卷
作者: Fu, Zhichao Wu, Anran Zhuang, Zisong Wu, Xingjiao He, Jun East China Normal Univ Sch Comp Sci & Technol Shanghai Peoples R China East China Normal Univ Shanghai Key Lab Multidimens Informat Proc Shanghai Peoples R China Fudan Univ Shanghai Peoples R China
Depth completion is a low-level task rebuilding the dense depth from a sparse set of measurements from lidar sensors and corresponding RGB images. Current state-of-the-art depth completion methods used complicated net... 详细信息
来源: 评论
3DGTN: 3-D Dual-Attention GLocal Transformer Network for Point Cloud Classification and Segmentation
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷 1-1页
作者: Lu, Dening Gao, Kyle Xie, Qian Xu, Linlin Li, Jonathan Univ Waterloo Dept Syst Design Engn Waterloo ON N2L 3G1 Canada Univ Oxford Dept Comp Sci Oxford OX1 3QD England Univ Waterloo Dept Syst Design Engn Waterloo N2L 3G1 ON Canada Univ Waterloo Dept Geog & Environm Management Waterloo ON N2L 3G1 Canada
Although the application of Transformers to 3-D point cloud processing has achieved significant progress and success, it is still challenging for existing 3-D Transformer methods to efficiently and accurately learn bo... 详细信息
来源: 评论
Self-Supervised Depth Completion Based on Multi-Modal Spatio-Temporal Consistency
收藏 引用
REMOTE SENSING 2023年 第1期15卷 135-135页
作者: Zhang, Quan Chen, Xiaoyu Wang, Xingguo Han, Jing Zhang, Yi Yue, Jiang Nanjing Univ Sci & Technol Sch Elect Engn & Optoelect Technol Nanjing 210000 Peoples R China Hohai Univ Coll Sci Nanjing 210000 Peoples R China
Due to the low cost and easy deployment, self-supervised depth completion has been widely studied in recent years. In this work, a self-supervised depth completion method is designed based on multi-modal spatio-tempor... 详细信息
来源: 评论
3DLST: 3D Learnable Supertoken Transformer for lidar point cloud scene segmentation
收藏 引用
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2025年 140卷
作者: Lu, Dening Xu, Linlin Zhou, Jun Gao, Kyle (Yilin) Li, Jonathan Univ Waterloo Dept Syst Design Engn Waterloo ON N2L 3G1 Canada Univ Calgary Dept Geomatics Engn Calgary AB T2N 1N4 Canada Hong Kong Polytech Univ Sch Nursing TU428 Hong Kong Peoples R China Univ Waterloo Dept Geog & Environm Management Waterloo ON N2L 3G1 Canada
3D Transformers have achieved great success in point cloud understanding and representation. However, there is still considerable scope for further development in effective and efficient Transformers for large-scale L... 详细信息
来源: 评论
An Efficient Information-Reinforced lidar Deep Completion Network without RGB Guided
收藏 引用
REMOTE SENSING 2022年 第19期14卷 4689-4689页
作者: Wei, Ming Zhu, Ming Zhang, Yaoyuan Sun, Jiaqi Wang, Jiarong Chinese Acad Sci Changchun Inst Opt Fine Mech & Phys Changchun 130033 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
Due to the sparsity of point clouds obtained by lidar, the depth information is usually not complete and dense. The depth completion task is to recover dense depth information from sparse depth information. However, m... 详细信息
来源: 评论
Learning and Recognizing Archeological Features from lidar data
Learning and Recognizing Archeological Features from LiDAR D...
收藏 引用
IEEE International Conference on Big data (Big data)
作者: Albrecht, Conrad M. Fisher, Chris Freitag, Marcus Hamann, Hendrik F. Pankanti, Sharathchandra Pezzutti, Florencia Rossi, Francesca IBM Res TJ Watson Res Ctr Yorktown Hts NY 10598 USA Colorado State Univ Dept Antropol & Geog Ft Collins CO 80523 USA
We present a remote sensing pipeline that processes lidar (Light Detection And Ranging) data through machine & deep learning for the application of archeological feature detection on big geo-spatial data platforms... 详细信息
来源: 评论
lidar SLAM Positioning Quality Evaluation in Urban Road Traffic  3rd
LiDAR SLAM Positioning Quality Evaluation in Urban Road Traf...
收藏 引用
3rd European-Alliance-for-Innovation (EAI) International Conference on Intelligent Transport Systems (INTSYS)
作者: Andert, Franz Mosebach, Henning German Aerosp Ctr DLR Inst Transportat Syst Berlin Germany
This paper addresses the positioning quality of Simultaneous Localization And Mapping (SLAM) based on Light Detection and Ranging (lidar) sensors within urban road traffic. Based on the assumption of functional capabi... 详细信息
来源: 评论