This paper presents an approach for fixed-order Linear Parameter Varying (LPV) controller design with application to a 2 Degree-of-Freedom (2DOF) gyroscope experimental setup. Inner convex approximation of the non-con...
详细信息
This paper presents an approach for fixed-order Linear Parameter Varying (LPV) controller design with application to a 2 Degree-of-Freedom (2DOF) gyroscope experimental setup. Inner convex approximation of the non-convex set of all stabilizing fixed-order LPV controllers is characterized through a set of Linear Matrix Inequalities (lmis). This is achieved through the use of two slack matrices which enable decoupling of the controller and Lyapunov matrix parameters in the derivative of Lyapunov function. The LPV model obtained by the approximation of the nonlinear model of the 2DOF gyroscope is used for the design of a second-order LPV controller. Experimental results show good tracking performance in the presence of scheduling parameter variations. (C) 2015, IFAC (International Federation of Automatic control) Hosting by Elsevier Ltd. All rights reserved.
暂无评论