咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 59 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 31 篇 计算机科学与技术...
    • 14 篇 电气工程
    • 9 篇 信息与通信工程
    • 6 篇 仪器科学与技术
    • 6 篇 土木工程
    • 5 篇 石油与天然气工程
    • 5 篇 软件工程
    • 4 篇 机械工程
    • 4 篇 控制科学与工程
    • 3 篇 动力工程及工程热...
    • 3 篇 交通运输工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 地质资源与地质工...
  • 9 篇 理学
    • 6 篇 化学
    • 5 篇 生物学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 59 篇 lstm autoencoder
  • 19 篇 anomaly detectio...
  • 10 篇 deep learning
  • 8 篇 unsupervised lea...
  • 6 篇 predictive maint...
  • 3 篇 machine learning
  • 2 篇 duet attack
  • 2 篇 isolation forest
  • 2 篇 semi-supervised ...
  • 2 篇 xai
  • 2 篇 gradient shap
  • 2 篇 feature extracti...
  • 2 篇 air pressure sys...
  • 2 篇 manipulated over...
  • 2 篇 failure detectio...
  • 2 篇 voltage-based id...
  • 2 篇 ics
  • 2 篇 data models
  • 2 篇 pca
  • 2 篇 sensor faults

机构

  • 2 篇 northeastern uni...
  • 1 篇 devoteam res
  • 1 篇 kocaeli univ dep...
  • 1 篇 univ. lille ensa...
  • 1 篇 univ putra malay...
  • 1 篇 royal mil coll c...
  • 1 篇 hitachi abb powe...
  • 1 篇 inegi inst sci &...
  • 1 篇 univ putra malay...
  • 1 篇 inha univ dept s...
  • 1 篇 algoritmi ctr p-...
  • 1 篇 univ paris viii
  • 1 篇 univ agder dept ...
  • 1 篇 swinburne univ t...
  • 1 篇 hanoi university...
  • 1 篇 chongqing univ c...
  • 1 篇 parque ind venda...
  • 1 篇 inesc tec porto
  • 1 篇 deakin univ sch ...
  • 1 篇 hepsiburada r&d ...

作者

  • 2 篇 koprubasi kerem
  • 2 篇 cevik enes
  • 2 篇 nguyen huu du
  • 2 篇 yilmaz metin
  • 2 篇 kim phuc tran
  • 2 篇 mise serdar
  • 2 篇 xu jian
  • 2 篇 nguyen viet hoan...
  • 2 篇 truong thu huong
  • 2 篇 yin long
  • 2 篇 wang chen
  • 2 篇 unel mustafa
  • 2 篇 nguyen xuan hoan...
  • 2 篇 do thu ha
  • 2 篇 unsal simge
  • 1 篇 bae jinhyun
  • 1 篇 jazdi nasser
  • 1 篇 wang lei
  • 1 篇 liu jingjing
  • 1 篇 yusof mohd johar...

语言

  • 56 篇 英文
  • 3 篇 其他
检索条件"主题词=LSTM autoencoder"
59 条 记 录,以下是11-20 订阅
排序:
MicroMILTS: Fault Location for Microservices Based Mutual Information and lstm autoencoder  23
MicroMILTS: Fault Location for Microservices Based Mutual In...
收藏 引用
23rd Asia-Pacific Network Operations and Management Symposium (APNOMS)
作者: Yang, Linwei Li, Jing Shi, Kuanzhi Yang, Songlin Yang, Qingfu Sun, Jiangang Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Coll Artificial Intelligence Nanjing Peoples R China State Grid Corp China Informat & Commun Branch Beijing Peoples R China
Driven by the development of cloud computing and artificial intelligence, architecture has dramatically improved in terms of flexibility and scalability in software development. Therefore, it is increasingly being use... 详细信息
来源: 评论
Proactive Fault Diagnosis of a Radiator: A Combination of Gaussian Mixture Model and lstm autoencoder
收藏 引用
SENSORS 2023年 第21期23卷 8688-8688页
作者: Lee, Jeong-Geun Kim, Deok-Hwan Lee, Jang Hyun INHA Univ Dept Smart Digital Engn Incheon 22212 South Korea Doosan Ind Vehicle Co Ltd Incheon 22503 South Korea INHA Univ Dept Elect Engn Incheon 22212 South Korea INHA Univ Dept Naval Architecture & Ocean Engn Incheon 22212 South Korea
Radiator reliability is crucial in environments characterized by high temperatures and friction, where prompt interventions are often required to prevent system failures. This study introduces a proactive approach to ... 详细信息
来源: 评论
Air Pressure System Failures Detection Using lstm-autoencoder  4
Air Pressure System Failures Detection Using LSTM-Autoencode...
收藏 引用
4th IEEE International Workshop on Metrology for Automotive (MetroAutomotive)
作者: Mumcuoglu, Mehmet Emin Farea, Shawqi Mohammed Unel, Mustafa Mise, Serdar Unsal, Simge Cevik, Enes Yilmaz, Metin Koprubasi, Kerem Sabanci Univ Fac Engn & Nat Sci Istanbul Turkiye Ford OTOSAN Prod Dev Istanbul Turkiye
The reliability of Heavy-Duty Vehicles (HDVs) is critical for continuous operations in sectors like transportation and logistics. However, the complexity of these vehicles' subsystems, including the Air Pressure S... 详细信息
来源: 评论
Estimation of Frequency-Dependent Impedances in Power Grids by Deep lstm autoencoder and Random Forest
收藏 引用
ENERGIES 2021年 第13期14卷 3829页
作者: Bagheri, Azam Bongiorno, Massimo Gu, Irene Y. H. Svensson, Jan R. Chalmers Univ Technol Dept Elect Engn S-41296 Gothenburg Sweden Hitachi ABB Power Grids Power Grids Res S-72178 Vasteras Sweden
This paper proposes a deep-learning-based method for frequency-dependent grid impedance estimation. Through measurement of voltages and currents at a specific system bus, the estimate of the grid impedance was obtaine... 详细信息
来源: 评论
Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating lstm autoencoder Detector and Diagnostic Classifiers
收藏 引用
SENSORS 2021年 第2期21卷 433-433页
作者: Mallak, Ahlam Fathi, Madjid Univ Siegen Dept Elect Engn & Comp Sci Knowledge Based Syst & Knowledge Management D-57076 Siegen Germany
Anomaly occurrences in hydraulic machinery might lead to massive system shut down, jeopardizing the safety of the machinery and its surrounding human operator(s) and environment, and the severe economic implications f... 详细信息
来源: 评论
Sensor Fault Detection and Classification Using Multi-Step-Ahead Prediction with an Long Short-Term Memoery (lstm) autoencoder
收藏 引用
APPLIED SCIENCES-BASEL 2024年 第17期14卷 7717页
作者: Hasan, Md. Nazmul Jan, Sana Ullah Koo, Insoo Univ Ulsan Dept Elect Elect & Comp Engn 93 Daehak Ro Ulsan 44610 South Korea Edinburgh Napier Univ Sch Comp Engn & Built Environm Edinburgh EH10 5DT Scotland
The Internet of Things (IoT) is witnessing a surge in sensor-equipped devices. The data generated by these IoT devices serve as a critical foundation for informed decision-making, real-time insights, and innovative so... 详细信息
来源: 评论
lstm-autoencoder Based Anomaly Detection Using Vibration Data of Wind Turbines
收藏 引用
SENSORS 2024年 第9期24卷 2833页
作者: Lee, Younjeong Park, Chanho Kim, Namji Ahn, Jisu Jeong, Jongpil Sungkyunkwan Univ Dept Smart Factory Convergence 2066 Seobu ro Suwon 16419 South Korea Gfyhealth AI Res Ctr 20 Pangyo Ro Seongnam Si 13488 South Korea
The problem of energy depletion has brought wind energy under consideration to replace oil- or chemical-based energy. However, the breakdown of wind turbines is a major concern. Accordingly, unsupervised learning was ... 详细信息
来源: 评论
VidAnomaly: lstm-autoencoder-based Adversarial Learning for One-class Video Classification with Multiple Dynamic Images
VidAnomaly: LSTM-autoencoder-based Adversarial Learning for ...
收藏 引用
IEEE International Conference on Big Data (Big Data)
作者: Li, Shusheng He, Wenho McMaster Univ Dept Comp & Software Hamilton ON Canada
One-class video classification (anomalous video detection) serves an important role when abnormal videos are absent during training, poorly sampled or not well defined. However, one-class video classification is chall... 详细信息
来源: 评论
Detecting Intra Ventricular Haemorrhage in Preterm Neonates Using lstm autoencoders  10th
Detecting Intra Ventricular Haemorrhage in Preterm Neonates ...
收藏 引用
10th International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO)
作者: Muniru, Idris Oladele Grobler, Jacomine Van Wyk, Lizelle Stellenbosch Univ Stellenbosch South Africa
The neonatal period is a critical stage where physiological adaptations for extra-uterine life occur, and newborns are vulnerable to various diseases and disorders. Among these conditions, preterm neonates (PN) born b... 详细信息
来源: 评论
lstm autoencoders Applied to Semi-Supervised Crop Classification  29
LSTM AutoEncoders Applied to Semi-Supervised Crop Classifica...
收藏 引用
29th IEEE Conference on Signal Processing and Communications Applications (SIU)
作者: Teloglu, Hatice Kubra Aptoula, Erchan Gebze Tekn Univ Bilgisayar Muhendisligi Kocaeli Turkey Gebze Tekn Univ Bilisim Teknolojileri Enstitusu Kocaeli Turkey
Since creating labelled data in the field of remote sensing requires time and manpower, it has become important to use unlabelled data. In this paper we study a semi supervised long short term memory autocoder approac... 详细信息
来源: 评论