咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 9 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 1 篇 理学
    • 1 篇 数学

主题

  • 14 篇 lstm-autoencoder
  • 5 篇 anomaly detectio...
  • 3 篇 time series
  • 2 篇 deep learning
  • 2 篇 data quality tes...
  • 2 篇 explainability
  • 1 篇 process authenti...
  • 1 篇 cyber-physical s...
  • 1 篇 variational mode...
  • 1 篇 weight sparsific...
  • 1 篇 在线学习
  • 1 篇 task analysis
  • 1 篇 注意力机制
  • 1 篇 lattice structur...
  • 1 篇 学习行为模式
  • 1 篇 smart substation
  • 1 篇 domain adaptatio...
  • 1 篇 早期预警
  • 1 篇 negative log lik...
  • 1 篇 surrogate model

机构

  • 1 篇 univ seoul dept ...
  • 1 篇 beihang univ sch...
  • 1 篇 colorado state u...
  • 1 篇 computer science...
  • 1 篇 univ colorado an...
  • 1 篇 iiit naya raipur...
  • 1 篇 qinghai univ col...
  • 1 篇 新西兰奥克兰大学
  • 1 篇 华中师范大学
  • 1 篇 institute of com...
  • 1 篇 mississippi stat...
  • 1 篇 beihang univ sta...
  • 1 篇 anschutz medical...
  • 1 篇 budapest univ te...
  • 1 篇 qinghai coll arc...
  • 1 篇 univ luxembourg ...
  • 1 篇 tokyo metropolit...
  • 1 篇 univ texas arlin...
  • 1 篇 tarbiat modares ...
  • 1 篇 faculty of infor...

作者

  • 2 篇 li zhoujun
  • 2 篇 ghosh sudipto
  • 2 篇 gondalia shlok
  • 2 篇 ray indrakshi
  • 2 篇 zhai you
  • 2 篇 yang liqun
  • 2 篇 kahn michael g.
  • 2 篇 homayouni hajar
  • 1 篇 wu binbin
  • 1 篇 tian wenmeng
  • 1 篇 zhang yipeng
  • 1 篇 kan chen
  • 1 篇 agrawal anmol
  • 1 篇 rajabi mohammad ...
  • 1 篇 šabata tomáš
  • 1 篇 duggan jerry
  • 1 篇 xu tongge
  • 1 篇 李浩
  • 1 篇 zhang mingyan
  • 1 篇 villanyi balazs

语言

  • 12 篇 英文
  • 2 篇 中文
检索条件"主题词=LSTM-Autoencoder"
14 条 记 录,以下是1-10 订阅
排序:
lstm-autoencoder-Based Incremental Learning for Industrial Internet of Things
收藏 引用
IEEE ACCESS 2023年 11卷 137929-137936页
作者: Takele, Atallo Kassaw Villanyi, Balazs Budapest Univ Technol & Econ Fac Elect Engn & Informat Dept Elect Technol H-1117 Budapest Hungary
Edge-based intelligent data analytics supports the Industrial Internet of Things (IIoT) to enable efficient manufacturing. Incremental learning in the edge-based data analytics has the potential to analyze continuousl... 详细信息
来源: 评论
lstm-autoencoder-based Interpretable Predictive Maintenance Framework for Industrial Systems
LSTM-Autoencoder-based Interpretable Predictive Maintenance ...
收藏 引用
IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
作者: Agrawal, Anmol Sinha, Aparna Das, Debanjan IIIT Naya Raipur Dept ECE Naya Raipur India
The overall efficiency of thermal power plants is largely dependent on the health and performance of its various systems, of which the air pre-heaters (APHs) are one of the most crucial. The existing APH fault diagnos... 详细信息
来源: 评论
An lstm-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2023年 第4期34卷 1815-1831页
作者: Shi, Zhangyue Al Mamun, Abdullah Kan, Chen Tian, Wenmeng Liu, Chenang Oklahoma State Univ Sch Ind Engn & Management Stillwater OK 74078 USA Mississippi State Univ Dept Ind & Syst Engn Mississippi State MS 39762 USA Univ Texas Arlington Dept Ind Mfg & Syst Engn Arlington TX 76019 USA
Additive manufacturing (AM) has gained increasing popularity in a large variety of mission-critical fields, such as aerospace, medical, and transportation. The layer-by-layer fabrication scheme of the AM significantly... 详细信息
来源: 评论
A Study on Tool Breakage Detection During Milling Process Using lstm-autoencoder and Gaussian Mixture Model
收藏 引用
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING 2022年 第6期23卷 667-675页
作者: Nam, Jun Sik Kwon, Won Tae Univ Seoul Dept Mech & Informat Engn Seoul South Korea
In the milling process, a rotating cutting tool is used to cut the raw material into the desired shape. Since tool breakage adversely affects productivity, real-time tool breakage detection is required. In this study,... 详细信息
来源: 评论
Compression of EEG signals with the lstm-autoencoder via domain adaptation approach
收藏 引用
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 2024年 1-14页
作者: Liu, Yongfei Yang, Fan Wu, Binbin Qinghai Normal Univ Sch Comp Xining Peoples R China Qinghai Coll Architectural Technol Dept Math Xining Peoples R China Qinghai Univ Coll Civil & Hydraul Engn Xining Qinghai Peoples R China
The successful implementation of neural network-based EEG signal compression has led to significant cost reductions in data transmission. However, a major obstacle in this process arises from the decline in performanc... 详细信息
来源: 评论
An Autocorrelation-based lstm-autoencoder for Anomaly Detection on Time-Series Data  8
An Autocorrelation-based LSTM-Autoencoder for Anomaly Detect...
收藏 引用
8th IEEE International Conference on Big Data (Big Data)
作者: Homayouni, Hajar Ghosh, Sudipto Ray, Indrakshi Gondalia, Shlok Duggan, Jerry Kahn, Michael G. Colorado State Univ Dept Comp Sci Ft Collins CO 80523 USA Colorado State Univ Energy Inst Ft Collins CO 80523 USA Univ Colorado Anschutz Med Campus Boulder CO 80309 USA
Data quality significantly impacts the results of data analytics. Researchers have proposed machine learning based anomaly detection techniques to identify incorrect data. Existing approaches fail to (1) identify the ... 详细信息
来源: 评论
Active learning for lstm-autoencoder-based anomaly detection in electrocardiogram readings
Active learning for LSTM-autoencoder-based anomaly detection...
收藏 引用
2020 Workshop on Interactive Adaptive Learning, IAL 2020
作者: Šabata, Tomáš Holeňa, Martin Faculty of Information Technology Czech Technical University in Prague Prague Czech Republic Institute of Computer Science Czech Academy of Sciences Prague Czech Republic
来源: 评论
Deep learning for online AC False Data Injection Attack detection in smart grids: An approach using lstm-autoencoder
收藏 引用
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS 2021年 193卷 103178-103178页
作者: Yang, Liqun Zhai, You Li, Zhoujun Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China
The Power system is a crucial Cyber-Physical system and is prone to the False Data Injection Attack (FDIA). The existing FDIA detection mechanism focuses on DC state estimation. In this paper, we propose a phased AC F... 详细信息
来源: 评论
Anomaly detection in groundwater monitoring data using lstm-autoencoder neural networks
收藏 引用
ENVIRONMENTAL MONITORING AND ASSESSMENT 2024年 第8期196卷 692-692页
作者: Roukerd, Fatemeh Rezaiezadeh Rajabi, Mohammad Mahdi Tarbiat Modares Univ Civil & Environm Engn Fac POB 14115-397 Tehran Iran Univ Luxembourg Fac Sci Technol & Med FSTM Dept Engn Maison Nombre6 Ave Fonte L-4364 Esch Sur Alzette Luxembourg
Groundwater monitoring data can be prone to errors and biases due to various factors like borehole and equipment malfunctions, or human mistakes. These inaccuracies can jeopardize the groundwater system, leading to re... 详细信息
来源: 评论
电网数据流中的异常检测技术及应用
收藏 引用
微型计算机 2025年 第4期 46-48页
作者: 王奕 张梓扬 北京中电普华信息技术有限公司 北京100192 新西兰奥克兰大学 新西兰奥克兰1052
本研究通过分析大规模电网时间序列数据,提出了一种基于深度学习的异常检测模型。该模型结合了长短期记忆网络(lstm)和自编码器(autoencoder),能够有效捕捉电网数据的时间依赖性和非线性特征。实验结果表明,所提出的方法在检测准确率和... 详细信息
来源: 评论