咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 工学
    • 13 篇 计算机科学与技术...
    • 12 篇 电气工程
    • 4 篇 信息与通信工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 4 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 地理学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 3 篇 医学
    • 3 篇 临床医学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 24 篇 large-scale data...
  • 4 篇 mapreduce
  • 3 篇 hadoop
  • 3 篇 cloud computing
  • 2 篇 big data
  • 2 篇 kernel methods
  • 2 篇 program composit...
  • 2 篇 service composit...
  • 2 篇 seeds
  • 2 篇 machine learning
  • 2 篇 kernel
  • 2 篇 optical computin...
  • 2 篇 random projectio...
  • 1 篇 supercomputing
  • 1 篇 space complexiti...
  • 1 篇 performance
  • 1 篇 runtime
  • 1 篇 noise reduction
  • 1 篇 tensor decomposi...
  • 1 篇 clustering

机构

  • 2 篇 natl taiwan univ...
  • 1 篇 univ pierre & ma...
  • 1 篇 institut langevi...
  • 1 篇 zhongguancun lab...
  • 1 篇 espci inst lange...
  • 1 篇 natl inst inform...
  • 1 篇 microsoft dev ct...
  • 1 篇 oak ridge natl l...
  • 1 篇 wuhan univ sch r...
  • 1 篇 cnrs umr 8552 la...
  • 1 篇 china univ min &...
  • 1 篇 nagoya inst tech...
  • 1 篇 psl res univ f-7...
  • 1 篇 guangdong hong k...
  • 1 篇 simon fraser uni...
  • 1 篇 nagoya inst tech...
  • 1 篇 ensta bretagne f...
  • 1 篇 chinese acad sci...
  • 1 篇 lab sticc umr 62...
  • 1 篇 cnrs umr 8550 la...

作者

  • 2 篇 torisawa kentaro
  • 2 篇 leu jenq-shiou
  • 2 篇 tanaka masahiro
  • 2 篇 shih hsin-yu
  • 1 篇 uygun yasin
  • 1 篇 dos santos ferna...
  • 1 篇 taura kenjiro
  • 1 篇 sun weijun
  • 1 篇 datskova olga
  • 1 篇 zhang weikang
  • 1 篇 taurat kenjiro
  • 1 篇 a. drémeau
  • 1 篇 gigan s.
  • 1 篇 vijaykumar t. n.
  • 1 篇 fang shenghui
  • 1 篇 dreesen philippe
  • 1 篇 huang jhih-jia
  • 1 篇 zhou yuan
  • 1 篇 wang chao
  • 1 篇 zhou guoxu

语言

  • 24 篇 英文
检索条件"主题词=Large-Scale Data Processing"
24 条 记 录,以下是11-20 订阅
排序:
k-way In-place Merge by CPU-GPU Cooperative processing  35
k-way In-place Merge by CPU-GPU Cooperative Processing
收藏 引用
35th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP)
作者: Miura, Shinya Chang, Qiong Miyazaki, Jun Tokyo Inst Technol Sch Comp Tokyo Japan
We propose a high-performance k-way in-place merging algorithm by CPU-GPU cooperative processing. Current merging algorithms are either k-way in-place with CPUs only or in-place for data smaller than the GPU memory si... 详细信息
来源: 评论
The Family of MapReduce and large-scale data processing Systems
收藏 引用
ACM COMPUTING SURVEYS 2013年 第1期46卷 11-11页
作者: Sakr, Sherif Liu, Anna Fayoumi, Ayman G. NICTA Dept Comp Sci & Engn Sydney NSW Australia Univ New S Wales Sydney NSW Australia King Abdulaziz Univ Jeddah 21413 Saudi Arabia
In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large-scale data processing mec... 详细信息
来源: 评论
Autonomic Resource Management for Program Orchestration in large-scale data Analysis  31
Autonomic Resource Management for Program Orchestration in L...
收藏 引用
31st IEEE International Parallel and Distributed processing Symposium (IPDPS)
作者: Tanaka, Masahiro Taurat, Kenjiro Torisawa, Kentaro Natl Inst Informat & Commun Technol NICT Data Driven Intelligent Syst Res Ctr DIRECT Universal Commun Res Inst 3-5 HikaridaiSeika Cho Kyoto 6190289 Japan Univ Tokyo Grad Sch Informat Sci & Technol Dept Informat & Commun Engn Bunkyo Ku 7-3-1 Hongo Tokyo 1130033 Japan
large-scale data analysis applications are becoming more and more prevalent in a wide variety of areas. These applications are composed of many currently available programs called analysis components. Thousands of ana... 详细信息
来源: 评论
Low Latency and Resource-aware Program Composition for large-scale data Analysis  16
Low Latency and Resource-aware Program Composition for Large...
收藏 引用
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)
作者: Tanaka, Masahiro Taura, Kenjiro Torisawa, Kentaro Natl Inst Informat & Commun Technol NICT Universal Commun Res Inst 3-5 Hikaridai Seika Kyoto 6190289 Japan Univ Tokyo Grad Sch Informat Sci & Technol Dept Informat & Commun Engn 7-3-1 Hongo Bunkyo Ku Tokyo 1130033 Japan
The importance of large-scale data analysis has shown a recent increase in a wide variety of areas, such as natural language processing, sensor data analysis, and scientific computing. Such an analysis application typ... 详细信息
来源: 评论
RANDOM PROJECTIONS THROUGH MULTIPLE OPTICAL SCATTERING: APPROXIMATING KERNELS AT THE SPEED OF LIGHT  41
RANDOM PROJECTIONS THROUGH MULTIPLE OPTICAL SCATTERING: APPR...
收藏 引用
41st IEEE International Conference on Acoustics, Speech and Signal processing (ICASSP)
作者: Saade, A. Caltagirone, F. Carron, I. Daudet, L. Dremeau, A. Gigan, S. Krzakala, F. CNRS UMR 8550 Lab Phys Stat Paris France Ecole Normale Super F-75005 Paris France ESPCI Inst Langevin F-75005 Paris France CNRS UMR 7587 F-75005 Paris France Paris Diderot Univ Sorbonne Paris Cite F-75013 Paris France ENSTA Bretagne F-29806 Brest France Lab STICC UMR 6285 F-29806 Brest France CNRS UMR 8552 Lab Kastler Brossel F-75005 Paris France Univ Pierre & Marie Curie Paris 06 Sorbonne Univ F-75005 Paris France PSL Res Univ F-75005 Paris France
Random projections have proven extremely useful in many signal processing and machine learning applications. However, they often require either to store a very large random matrix, or to use a different, structured ma... 详细信息
来源: 评论
Performance impact of JobTracker failure in Hadoop
收藏 引用
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS 2015年 第7期28卷 1265-1281页
作者: Kim, Young-Pil Hong, Cheol-Ho Yoo, Chuck Korea Univ Comp Sci & Engn Seoul 136713 South Korea
In this paper, we analyze the performance impact of JobTracker failure in Hadoop. A JobTracker failure is a serious problem that affects the overall job processing performance. We describe the cause of failure and the... 详细信息
来源: 评论
RANDOM PROJECTIONS THROUGH MULTIPLE OPTICAL SCATTERING: APPROXIMATING KERNELS AT THE SPEED OF LIGHT
RANDOM PROJECTIONS THROUGH MULTIPLE OPTICAL SCATTERING: APPR...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: A. Saade F. Caltagirone I. Carron L. Daudet A. Drémeau S. Gigan F. Krzakala Laboratoire de Physique Statistique CNRS UMR 8550 & école Normale Supérieure Paris France. Institut Langevin ESPCI and CNRS UMR 7587 Paris F-75005 France ENSTA Bretagne and Lab-STICC UMR 6285 F-29806 Brest France Laboratoire Kastler Brossel CNRS UMR 8552 & Ecole Normale Supérieure75005 Paris France.
Random projections have proven extremely useful in many signal processing and machine learning applications. However, they often require either to store a very large random matrix, or to use a different, structured ma... 详细信息
来源: 评论
The role of text pre-processing in opinion mining on a social media language dataset  3
The role of text pre-processing in opinion mining on a socia...
收藏 引用
3rd Brazilian Conference on Intelligent Systems (BRACIS)
作者: dos Santos, Fernando Leandro Ladeira, Marcelo Univ Brasilia CIC UnB Brasilia DF Brazil
This work describes an opinion mining application over a dataset extracted from the web and composed of reviews with several Internet slangs, abbreviations and typo errors. Opinion mining is a study field that tries t... 详细信息
来源: 评论
MapReduce with communication overlap (MaRCO)
收藏 引用
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 2013年 第5期73卷 608-620页
作者: Ahmad, Faraz Lee, Seyong Thottethodi, Mithuna Vijaykumar, T. N. Purdue Univ W Lafayette IN 47906 USA Oak Ridge Natl Lab Oak Ridge TN 37831 USA
MapReduce is a programming model from Google for cluster-based computing in domains such as search engines, machine learning, and data mining. MapReduce provides automatic data management and fault tolerance to improv... 详细信息
来源: 评论
Distributed Kernel Matrix Approximation and Implementation Using Message Passing Interface
Distributed Kernel Matrix Approximation and Implementation U...
收藏 引用
12th International Conference on Machine Learning and Applications (ICMLA)
作者: Dameh, Taher A. Abd-Almageed, Wael Hefeeda, Mohamed Simon Fraser Univ Sch Comp Sci Burnaby BC V5A 1S6 Canada Univ Maryland Inst Adv Comp Studies College Pk MD 20742 USA
We propose a distributed method to compute similarity (also known as kernel and Gram) matrices used in various kernel-based machine learning algorithms. Current methods for computing similarity matrices have quadratic... 详细信息
来源: 评论