咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 工学
    • 20 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 1 篇 化学工程与技术
    • 1 篇 矿业工程
    • 1 篇 软件工程
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 理学
    • 1 篇 地质学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 21 篇 large-scale imag...
  • 4 篇 visual tree
  • 3 篇 deep features
  • 3 篇 incremental lear...
  • 2 篇 inter-related cl...
  • 2 篇 joint dictionary...
  • 2 篇 dimensionality r...
  • 2 篇 split bregman it...
  • 2 篇 deep convolution...
  • 2 篇 random forests
  • 2 篇 visual concept n...
  • 2 篇 hierarchical lea...
  • 2 篇 convolutional ne...
  • 2 篇 hierarchical cla...
  • 1 篇 genetic programm...
  • 1 篇 bsn method
  • 1 篇 clustering
  • 1 篇 support vector m...
  • 1 篇 jetson nano
  • 1 篇 novel category d...

机构

  • 4 篇 xi an jiao tong ...
  • 2 篇 nw univ xian sch...
  • 2 篇 xiamen univ dept...
  • 1 篇 univ evansville ...
  • 1 篇 univ nice sophia...
  • 1 篇 nanjing univ inf...
  • 1 篇 department of co...
  • 1 篇 upc csic inst ro...
  • 1 篇 china univ min &...
  • 1 篇 swiss fed inst t...
  • 1 篇 upc csic inst ro...
  • 1 篇 xiamen univ fuji...
  • 1 篇 univ technol syd...
  • 1 篇 peking univ inst...
  • 1 篇 northwest univ s...
  • 1 篇 qatar univ coll ...
  • 1 篇 chinese acad sci...
  • 1 篇 univ n carolina ...
  • 1 篇 chinese acad sci...
  • 1 篇 chinese acad sci...

作者

  • 5 篇 fan jianping
  • 4 篇 mei kuizhi
  • 3 篇 qu yanyun
  • 3 篇 dong peixiang
  • 3 篇 lei hao
  • 2 篇 ji zhang
  • 2 篇 ramisa arnau
  • 2 篇 torras carme
  • 2 篇 zhang yan
  • 2 篇 jianping fan
  • 1 篇 yu zheng
  • 1 篇 li hanqian
  • 1 篇 li cuihua
  • 1 篇 van gool luc
  • 1 篇 qiao siyuan
  • 1 篇 barlaud michel
  • 1 篇 liu yang
  • 1 篇 zhang wenjun
  • 1 篇 zhang ji
  • 1 篇 lu chang

语言

  • 21 篇 英文
检索条件"主题词=Large-Scale Image Classification"
21 条 记 录,以下是1-10 订阅
排序:
Ontology-driven hierarchical sparse coding for large-scale image classification
收藏 引用
NEUROCOMPUTING 2019年 360卷 209-219页
作者: Zhang, Yan Qu, Yanyun Li, Cuihua Lei, Yunqi Fan, Jianping Xiamen Univ Fujian Key Lab Sensing & Comp Smart Cities Comp Sci Dept Xiamen Fujian Peoples R China Guizhou Normal Univ Sch Math Sci Guiyang Guizhou Peoples R China Univ North Carolina Charlotte Dept Comp Sci Charlotte NC USA
An ontology-driven hierarchical sparse representation is developed in this paper, which aims to support hierarchical learning for large scale image classification. Firstly, a two-layer ontology (semantic ontology and ... 详细信息
来源: 评论
Learning multi-layer coarse-to-fine representations for large-scale image classification
收藏 引用
PATTERN RECOGNITION 2019年 91卷 175-189页
作者: Zhang, Ji Mei, Kuizhi Zheng, Yu Fan, Jianping Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China Xidian Univ Dept Elect Engn Xian 710071 Shaanxi Peoples R China Univ N Carolina Dept Comp Sci Charlotte NC 28223 USA
Recent studies on large-scale image classification mainly focus on categorizing images into 1000 object classes, and all these 1000 object classes are atomic and mutually exclusive in the semantic space. However, for ... 详细信息
来源: 评论
Joint Dictionary Learning via Split Bregman Iteration for large-scale image classification  18th
Joint Dictionary Learning via Split Bregman Iteration for La...
收藏 引用
18th Pacific-Rim Conference on Multimedia (PCM)
作者: Qu, Yanyun Li, Hanqian Zhang, Yan Xiamen Univ Dept Comp Sci Xiamen Peoples R China
This paper aims at the hierarchical learning for large-scale image classification. Due to flexibility and capability, sparse representation is widely used in object recognition. The hierarchy is introduced to joint di... 详细信息
来源: 评论
Joint Hierarchical Category Structure Learning and large-scale image classification
收藏 引用
IEEE TRANSACTIONS ON image PROCESSING 2017年 第9期26卷 4331-4346页
作者: Qu, Yanyun Lin, Li Shen, Fumin Lu, Chang Wu, Yang Xie, Yuan Tao, Dacheng Xiamen Univ Dept Comp Sci Xiamen 361005 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Nara Inst Sci & Technol Inst Res Initiat Nara 6300192 Japan Chinese Acad Sci Control Inst Automat Res Ctr Precis Sensing Beijing 100190 Peoples R China Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Ultimo NSW 2007 Australia
We investigate the scalable image classification problem with a large number of categories. Hierarchical visual data structures are helpful for improving the efficiency and performance of large-scale multi-class class... 详细信息
来源: 评论
Hierarchical learning of multi-task sparse metrics for large-scale image classification
收藏 引用
Pattern Recognition 2017年 67卷 97-109页
作者: Yu Zheng Jianping Fan Ji Zhang Xinbo Gao Department of Electronic Engineering Xidian University Xi’an 710071 PR China Department of Computer Science University of North Carolina Charlotte NC 28223 USA Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Xi’an 710049 PR China
In this paper, a novel approach is developed to learn a tree of multi-task sparse metrics hierarchically over a visual tree to achieve a fast solution to large-scale image classification, where an enhanced visual tree... 详细信息
来源: 评论
Incremental Learning of Random Forests for large-scale image classification
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2016年 第3期38卷 490-503页
作者: Ristin, Marko Guillaumin, Matthieu Gall, Juergen Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Univ Bonn Comp Vis Grp Bonn Germany
large image datasets such as imageNet or open-ended photo websites like Flickr are revealing new challenges to image classification that were not apparent in smaller, fixed sets. In particular, the efficient handling ... 详细信息
来源: 评论
Hierarchical learning of large-margin metrics for large-scale image classification
收藏 引用
NEUROCOMPUTING 2016年 第0期208卷 46-58页
作者: Lei, Hao Mei, Kuizhi Xin, Jingmin Dong, Peixiang Fan, Jianping Chinese Acad Sci Xian Inst Opt & Precis Mech Xian 710119 Peoples R China Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China Northwest Univ Sch Informat Sci & Technol Xian 710069 Peoples R China
large-scale image classification is a challenging task and has recently attracted active research interests. In this paper, a new algorithm is developed to achieve more effective implementation of large-scale image cl... 详细信息
来源: 评论
A Vector Quantization Based k-NN Approach for large-scale image classification  6
A Vector Quantization Based k-NN Approach for Large-Scale Im...
收藏 引用
6th International Conference on image Processing Theory, Tools and Applications (IPTA)
作者: Ozan, Ezgi Can Riabchenko, Ekaterina Kiranyaz, Serkan Gabbouj, Moncef Tampere Univ Technol Dept Signal Proc Tampere Finland Qatar Univ Coll Engn Dept Elect Engn Doha Qatar
The k-nearest-neighbour classifiers (k-NN) have been one of the simplest yet most effective approaches to instance based learning problem for image classification. However, with the growth of the size of image dataset... 详细信息
来源: 评论
Evolutionary compact embedding for large-scale image classification
收藏 引用
INFORMATION SCIENCES 2015年 316卷 567-581页
作者: Liu, Li Shao, Ling Li, Xuelong Nanjing Univ Informat Sci & Technol Coll Elect & Informat Engn Nanjing 210044 Jiangsu Peoples R China Univ Sheffield Dept Elect & Elect Engn Sheffield S1 3JD S Yorkshire England Chinese Acad Sci XIOPM State Key Lab Transient Opt & Photon Xian 710119 Shannxi Peoples R China
Effective dimensionality reduction is a classical research area for many large-scale analysis tasks in computer vision. Several recent methods attempt to learn either graph embedding or binary hashing for fast and acc... 详细信息
来源: 评论
Cost-sensitive learning of hierarchical tree classifiers for large-scale image classification and novel category detection
收藏 引用
Pattern Recognition 2015年 第5期48卷 1673-1687页
作者: Jianping Fan Ji Zhang Kuizhi Mei Jinye Peng Ling Gao School of Information Science and Technology Northwest University Xi'an PR China Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an 710049 PR China
In this paper, a cost-sensitive learning algorithm is developed to train hierarchical tree classifiers for large-scale image classification application (i.e., categorizing large-scale images into thousands of object c... 详细信息
来源: 评论