咨询与建议

限定检索结果

文献类型

  • 60 篇 会议
  • 44 篇 期刊文献

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 69 篇 计算机科学与技术...
    • 61 篇 电气工程
    • 23 篇 信息与通信工程
    • 18 篇 软件工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 环境科学与工程(可...
  • 30 篇 医学
    • 30 篇 临床医学
  • 4 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 地球物理学
    • 1 篇 系统科学

主题

  • 104 篇 learned image co...
  • 21 篇 image coding
  • 12 篇 deep learning
  • 12 篇 entropy
  • 8 篇 decoding
  • 8 篇 transforms
  • 7 篇 context modeling
  • 6 篇 computational mo...
  • 6 篇 image compressio...
  • 6 篇 quantization (si...
  • 6 篇 image reconstruc...
  • 5 篇 transformer
  • 4 篇 transformers
  • 4 篇 entropy model
  • 4 篇 bit rate
  • 4 篇 quantization
  • 4 篇 robustness
  • 4 篇 adaptation model...
  • 3 篇 interpretability
  • 3 篇 variational auto...

机构

  • 5 篇 nanjing univ sch...
  • 5 篇 peng cheng lab p...
  • 4 篇 wuhan univ sch r...
  • 4 篇 tencent amer pal...
  • 4 篇 purdue univ elmo...
  • 3 篇 waseda univ dept...
  • 3 篇 huawei technol p...
  • 3 篇 tech univ munich...
  • 3 篇 city univ hong k...
  • 3 篇 wuhan univ hubei...
  • 2 篇 peking univ peop...
  • 2 篇 tencent peoples ...
  • 2 篇 santa clara univ...
  • 2 篇 harbin inst tech...
  • 2 篇 univ sci & techn...
  • 2 篇 huawei munich re...
  • 2 篇 friedrich alexan...
  • 2 篇 waseda univ wase...
  • 2 篇 wuhan univ peopl...
  • 2 篇 tsinghua univ sh...

作者

  • 9 篇 sun heming
  • 7 篇 chen zhenzhong
  • 6 篇 liu dong
  • 6 篇 alshina elena
  • 6 篇 liu shan
  • 6 篇 kaup andre
  • 6 篇 katto jiro
  • 5 篇 li li
  • 5 篇 ma zhan
  • 5 篇 koyuncu a. burak...
  • 4 篇 liang jie
  • 4 篇 jia panqi
  • 4 篇 xu xiaozhong
  • 4 篇 zhang haotian
  • 4 篇 ding ding
  • 4 篇 ma siwei
  • 4 篇 zhu fengqing
  • 4 篇 li binglin
  • 3 篇 fu nianxiang
  • 3 篇 han jingning

语言

  • 104 篇 英文
检索条件"主题词=Learned Image Compression"
104 条 记 录,以下是1-10 订阅
排序:
learned image compression With Efficient Cross-Platform Entropy Coding
收藏 引用
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 2025年 第1期15卷 72-82页
作者: Yang, Runyu Liu, Dong Wu, Feng Gao, Wen Univ Sci & Technol China Key Lab Brain Inspired Intelligent Percept & Cogni MOE Hefei 230027 Peoples R China Peking Univ Sch Comp Sci Beijing 100871 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China
learned image compression has shown remarkable compression efficiency gain over the traditional image compression solutions, which is partially attributed to the learned entropy models and the adopted entropy coding e... 详细信息
来源: 评论
Q-LIC: Quantizing learned image compression With Channel Splitting
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2025年 第4期35卷 3798-3811页
作者: Sun, Heming Yu, Lu Katto, Jiro Waseda Univ Waseda Res Inst Sci & Engn Tokyo 1698555 Japan Japan Sci & Technol Agcy JST PRESTO Kawaguchi Saitama 3320012 Japan Zhejiang Univ Inst Informat & Commun Engn Hangzhou 310023 Peoples R China Waseda Univ Grad Sch Fundamental Sci & Engn Tokyo 1698555 Japan Waseda Res Inst Sci & Engn Tokyo 1698555 Japan
learned image compression (LIC) has reached a comparable coding gain with traditional hand-crafted methods such as VVC intra. However, the large network complexity prohibits the usage of LIC on resource-limited embedd... 详细信息
来源: 评论
STanH: Parametric Quantization for Variable Rate learned image compression
收藏 引用
IEEE TRANSACTIONS ON image PROCESSING 2025年 34卷 639-651页
作者: Presta, Alberto Tartaglione, Enzo Fiandrotti, Attilio Grangetto, Marco Univ Turin Comp Sci Dept I-10124 Turin Italy Inst Polytech Paris LTCI Telecom Paris F-91120 Palaiseau France
In end-to-end learned image compression, encoder and decoder are jointly trained to minimize a R + lambda D cost function, where lambda controls the trade-off between rate of the quantized latent representation and im... 详细信息
来源: 评论
Generalized Gaussian Model for learned image compression
收藏 引用
IEEE TRANSACTIONS ON image PROCESSING 2025年 34卷 1950-1965页
作者: Zhang, Haotian Li, Li Liu, Dong Univ Sci & Technol China MOE Key Lab Brain Inspired Intelligent Percept & C Hefei 230093 Peoples R China
In learned image compression, probabilistic models play an essential role in characterizing the distribution of latent variables. The Gaussian model with mean and scale parameters has been widely used for its simplici... 详细信息
来源: 评论
Subset-Selection Weight Post-Training Quantization Method for learned image compression Task
收藏 引用
IEEE ACCESS 2025年 13卷 5145-5153页
作者: Yang, Jinru Wang, Xiaoqin Li, Qiang Qiao, Shushan Zhou, Yumei Chinese Acad Sci Inst Microelect Beijing 100029 Peoples R China Univ Chinese Acad Sci Sch Integrated Circuits Beijing 101408 Peoples R China
Post-training quantization(PTQ) has been widely studied in recent years because it does not require retraining the network or the entire training dataset. However, naively applying the PTQ method to quantize low-level... 详细信息
来源: 评论
JND-LIC: learned image compression via Just Noticeable Difference for Human Visual Perception
收藏 引用
IEEE TRANSACTIONS ON BROADCASTING 2025年 第1期71卷 217-228页
作者: Pan, Zhaoqing Zhang, Guoyu Peng, Bo Lei, Jianjun Xie, Haoran Wang, Fu Lee Ling, Nam Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Lingnan Univ Dept Comp & Decis Sci Hong Kong Peoples R China Hong Kong Metropolitan Univ Sch Sci & Technol Hong Kong Peoples R China Santa Clara Univ Dept Comp Sci & Engn Santa Clara CA 95053 USA
Existing human visual perception-oriented image compression methods well maintain the perceptual quality of compressed images, but they may introduce fake details into the compressed images, and cannot dynamically imp... 详细信息
来源: 评论
Dynamic kernel-based adaptive spatial aggregation for learned image compression
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND image REPRESENTATION 2025年 110卷
作者: Wang, Huairui Fu, Nianxiang Chen, Zhenzhong Liu, Shan Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China Wuhan Univ Hubei Luojia Lab Wuhan Peoples R China Tencent Amer Media Lab Palo Alto CA USA
learned image compression methods have shown remarkable performance and expansion potential compared to traditional codecs. Currently, there are two mainstream image compression frameworks: one uses stacked convolutio... 详细信息
来源: 评论
Enhancing learned image compression via Cross Window-Based Attention  19th
Enhancing Learned Image Compression via Cross Window-Based A...
收藏 引用
19th International Symposium on Visual Computing
作者: Mudgal, Priyanka Liu, Feng Portland State Univ Portland OR 97124 USA
In recent years, learned image compression methods have demonstrated superior rate-distortion performance compared to traditional image compression methods. Recent methods utilize convolutional neural networks (CNN), ... 详细信息
来源: 评论
ALIC: Adaptive Fusion Entropy Model for learned image compression
ALIC: Adaptive Fusion Entropy Model for Learned Image Compre...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Lingxue Liu, Meiqin Zhang, Yifan Tang, Qi Yao, Chao Zhao, Yao Institute of Information Science Beijing Jiaotong University Beijing China Visual Intelligence + X International Cooperation Joint Laboratory of MOE Beijing Jiaotong University China School of Computer and Communication Engineering University of Science and Technology Beijing Beijing China
Recently, learned image compression algorithms have achieved significant performance. The entropy model is crucial for improving the rate-distortion performance by estimating the probability distribution of latent rep... 详细信息
来源: 评论
Estimating the resize parameter in end-to-end learned image compression
收藏 引用
SIGNAL PROCESSING-image COMMUNICATION 2025年 135卷
作者: Chen, Li-Heng Bampis, Christos G. Li, Zhi Krasula, Lukas Bovik, Alan C. Univ Texas Austin Dept Elect & Comp Engn Austin TX 78712 USA Netflix Inc Los Gatos CA USA
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models. Our approach is simple: compose a pair of differentiable downsampling/upsa... 详细信息
来源: 评论