咨询与建议

限定检索结果

文献类型

  • 470 篇 期刊文献
  • 263 篇 会议
  • 9 篇 学位论文
  • 5 册 图书
  • 1 篇 资讯

馆藏范围

  • 748 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 650 篇 工学
    • 412 篇 计算机科学与技术...
    • 236 篇 电气工程
    • 141 篇 控制科学与工程
    • 75 篇 软件工程
    • 67 篇 信息与通信工程
    • 29 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 28 篇 仪器科学与技术
    • 20 篇 石油与天然气工程
    • 15 篇 材料科学与工程(可...
    • 15 篇 动力工程及工程热...
    • 12 篇 力学(可授工学、理...
    • 12 篇 交通运输工程
    • 6 篇 土木工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 5 篇 网络空间安全
  • 131 篇 理学
    • 65 篇 数学
    • 32 篇 物理学
    • 16 篇 生物学
    • 12 篇 系统科学
    • 8 篇 化学
    • 7 篇 统计学(可授理学、...
  • 105 篇 管理学
    • 101 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 46 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
  • 9 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 教育学
    • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 4 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 748 篇 learning algorit...
  • 51 篇 neural network
  • 38 篇 neural networks
  • 36 篇 learning (artifi...
  • 30 篇 artificial neura...
  • 19 篇 convergence
  • 19 篇 classification
  • 16 篇 pattern recognit...
  • 15 篇 neural nets
  • 14 篇 data mining
  • 14 篇 backpropagation
  • 13 篇 feedforward neur...
  • 12 篇 optimization
  • 12 篇 cost function
  • 11 篇 generalization
  • 11 篇 artificial intel...
  • 11 篇 adaptive control
  • 10 篇 fuzzy neural net...
  • 10 篇 learning algorit...
  • 10 篇 machine learning

机构

  • 6 篇 islamic azad uni...
  • 5 篇 islamic azad uni...
  • 5 篇 isfahan univ tec...
  • 4 篇 islamic azad uni...
  • 4 篇 daqing petr inst...
  • 3 篇 new jersey inst ...
  • 3 篇 amirkabir univ t...
  • 3 篇 natl sun yat sen...
  • 3 篇 univ chinese aca...
  • 3 篇 univ sannio dept...
  • 3 篇 natl inst techno...
  • 3 篇 natl univ singap...
  • 3 篇 univ bonab elect...
  • 3 篇 natl yunlin univ...
  • 3 篇 univ windsor dep...
  • 3 篇 riverside res be...
  • 2 篇 shandong normal ...
  • 2 篇 yunnan normal un...
  • 2 篇 department of ag...
  • 2 篇 univ bonab dept ...

作者

  • 11 篇 mohammadzadeh ar...
  • 7 篇 arani atefeh haj...
  • 6 篇 otadi mahmood
  • 6 篇 omidi mohammad j...
  • 5 篇 jafarian ahmad
  • 5 篇 mosleh maryam
  • 5 篇 mehbodniya abolf...
  • 4 篇 xu yuhua
  • 4 篇 lee shie-jue
  • 4 篇 jafarian a.
  • 4 篇 adachi fumiyuki
  • 4 篇 polycarpou mm
  • 3 篇 han xiaohong
  • 3 篇 li xin
  • 3 篇 ghritlahre haris...
  • 3 篇 liu yang
  • 3 篇 graham james
  • 3 篇 otadi m.
  • 3 篇 haddadnia j
  • 3 篇 kim sungwook

语言

  • 679 篇 英文
  • 48 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"主题词=Learning Algorithm"
748 条 记 录,以下是221-230 订阅
排序:
Parallel learning Portfolio-based solvers
Parallel Learning Portfolio-based solvers
收藏 引用
International Conference on Computational Science (ICCS)
作者: Menouer, Tarek Baarir, Souheib Paris Nanterre Univ CNRS UMR 7606 Lab LIP6 Paris France LRDE Lab Kremlin Bicltre France
Exploiting multi-core architectures is a way to tackle the CPU time consumption when solving SAT-isfiability (SAT) problems. Portfolio is one of the main techniques that implements this principle. It consists in makin... 详细信息
来源: 评论
learning of Audiovisual Integration
Learning of Audiovisual Integration
收藏 引用
IEEE International Conference on Development and learning (ICDL)
作者: Yan, Rujiao Rodemann, Tobias Wrede, Britta Univ Bielefeld Res Inst Cognit & Robot CoR Lab D-33594 Bielefeld Germany Honda Res Inst Europe GmbH D-63073 Offenbach Germany
We present a system for learning audiovisual integration based on temporal and spatial coincidence. The current sound is sometimes related to a visual signal that has not yet been seen, we consider this situation as w... 详细信息
来源: 评论
Multi-Agent Reinforcement learning with Information-sharing Constrained Policy Optimization for Global Cost Environment  22
Multi-Agent Reinforcement Learning with Information-sharing ...
收藏 引用
22nd World Congress of the International Federation of Automatic Control (IFAC)
作者: Okawa, Yoshihiro Dan, Hayato Morita, Natsuki Ogawa, Masatoshi Fujitsu Ltd Artificial Intelligence Lab Kawasaki Kanagawa Japan
Multi-agent Reinforcement learning (MARL) is a machine learning method that solves problems by using multiple learning agents in a data-driven manner. Because of the advantage of utilizing multiple agents simultaneous... 详细信息
来源: 评论
learning a Propagation Complete Formula  1
收藏 引用
19th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR)
作者: Kucera, Petr Charles Univ Prague Fac Math & Phys Dept Theoret Comp Sci & Math Log Prague Czech Republic
Propagation complete formulas were introduced by Bordeaux and Marques-Silva (2012) as a possible target language for knowledge compilation. A CNF formula is propagation complete (PC) if for every partial assignment, t... 详细信息
来源: 评论
New algorithm to improve the learning performance of neural network through result-feedback
收藏 引用
Jisuanji Yanjiu yu Fazhan/Computer Research and Development 2004年 第9期41卷 1488-1492页
作者: Wu, Yan Wang, Shou-Jue Dept. of Computer Sci. and Eng. Tongji Univ. Shanghai 200092 China Inst. of Semiconduct. and Info. Tech Tongji Univ. Shanghai 200092 China Lab. of Artificial Neural Networks Inst. of Semiconductors Chinese Acad. of Sciences Beijing 100083 China
The combination of input vector tuning with traditional weight tuning of back-propagation algorithm results in a new algorithm on the basis of result feedback (FBBP). This FBBP-based algorithm is an inner-and-outer la... 详细信息
来源: 评论
Diagnostic Neuro-Fuzzy System and Its learning in Medical Data Mining Tasks in Conditions of Uncertainty about Numbers of Attributes and Diagnoses
收藏 引用
AUTOMATIC CONTROL AND COMPUTER SCIENCES 2017年 第6期51卷 391-398页
作者: Pliss, Iryna Perova, Iryna Kharkiv Natl Univ Radio Elect UA-61166 Kharkov Ukraine
Architecture and learning method for evolving diagnostic neuro-fuzzy-system for Medical Data Mining tasks in situation of uncertainty about quantities of attributes and diagnoses are proposed. Diagnostic neuro-fuzzy-s... 详细信息
来源: 评论
Tunable and Generic Problem Instance Generation for Multi-objective Reinforcement learning
Tunable and Generic Problem Instance Generation for Multi-ob...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning (ADPRL)
作者: Garrett, Deon Bieger, Jordi Throisson, Kristinn R. Reykjavik Univ Iceland Inst Intelligent Machines Reykjavik Iceland Reykjavik Univ Reykjavik Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
Representational Capabilities and learning of Bithreshold Neural Networks
Representational Capabilities and Learning of Bithreshold Ne...
收藏 引用
International Scientific Conference on Intellectual Systems of Decision-Making and Problems of Computational Intelligence (ISDMCI)
作者: Kotsovsky, Vladyslav Batyuk, Anatoliy Uzhgorod Natl Univ Uzhgorod Ukraine Lviv Polytech Natl Univ Lvov Ukraine
The paper deals with questions related to the ability of real-weighted bithreshold neurons and neural networks to solve the classification tasks. We study how many partitions of a finite set in n-dimensional vector sp... 详细信息
来源: 评论
Formal Neuron Based on Adaptive Parametric Rectified Linear Activation Function and its learning  1
Formal Neuron Based on Adaptive Parametric Rectified Linear ...
收藏 引用
1st International Workshop on Digital Content and Smart Multimedia (DCSMart)
作者: Bodyanskiy, Yevgeniy Deineko, Anastasiia Pliss, Iryna Slepanska, Valeriia Kharkiv Natl Univ Radio Elect Control Syst Res Lab Kharkiv Ukraine Kharkiv Natl Univ Radio Elect Dept Artificial Intelligence Kharkiv Ukraine
The paper proposes an adaptive activation function (AdPReLU) for deep neural networks which is generalization of rectified unit family, differing by opportunity of online tuning its parameters during the learning proc... 详细信息
来源: 评论
learning BY PARALLEL FORWARD PROPAGATION
LEARNING BY PARALLEL FORWARD PROPAGATION
收藏 引用
INTERNATIONAL JOINT CONF ON NEURAL NETWORKS ( IJCNM-90 )
作者: ABE, S Hitachi Ltd Japan
The back-propagation algorithm is widely used for learning weights of multilayered neural networks. The major drawbacks however, are the slow convergence and lack of a proper way to set the number of hidden neurons. T... 详细信息
来源: 评论