咨询与建议

限定检索结果

文献类型

  • 470 篇 期刊文献
  • 263 篇 会议
  • 9 篇 学位论文
  • 5 册 图书
  • 1 篇 资讯

馆藏范围

  • 748 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 650 篇 工学
    • 412 篇 计算机科学与技术...
    • 236 篇 电气工程
    • 141 篇 控制科学与工程
    • 75 篇 软件工程
    • 67 篇 信息与通信工程
    • 29 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 28 篇 仪器科学与技术
    • 20 篇 石油与天然气工程
    • 15 篇 材料科学与工程(可...
    • 15 篇 动力工程及工程热...
    • 12 篇 力学(可授工学、理...
    • 12 篇 交通运输工程
    • 6 篇 土木工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 5 篇 网络空间安全
  • 131 篇 理学
    • 65 篇 数学
    • 32 篇 物理学
    • 16 篇 生物学
    • 12 篇 系统科学
    • 8 篇 化学
    • 7 篇 统计学(可授理学、...
  • 105 篇 管理学
    • 101 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 46 篇 医学
    • 33 篇 临床医学
    • 29 篇 基础医学(可授医学...
  • 9 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 教育学
    • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 4 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 748 篇 learning algorit...
  • 51 篇 neural network
  • 38 篇 neural networks
  • 36 篇 learning (artifi...
  • 30 篇 artificial neura...
  • 19 篇 convergence
  • 19 篇 classification
  • 16 篇 pattern recognit...
  • 15 篇 neural nets
  • 14 篇 data mining
  • 14 篇 backpropagation
  • 13 篇 feedforward neur...
  • 12 篇 optimization
  • 12 篇 cost function
  • 11 篇 generalization
  • 11 篇 artificial intel...
  • 11 篇 adaptive control
  • 10 篇 fuzzy neural net...
  • 10 篇 learning algorit...
  • 10 篇 machine learning

机构

  • 6 篇 islamic azad uni...
  • 5 篇 islamic azad uni...
  • 5 篇 isfahan univ tec...
  • 4 篇 islamic azad uni...
  • 4 篇 daqing petr inst...
  • 3 篇 new jersey inst ...
  • 3 篇 amirkabir univ t...
  • 3 篇 natl sun yat sen...
  • 3 篇 univ chinese aca...
  • 3 篇 univ sannio dept...
  • 3 篇 natl inst techno...
  • 3 篇 natl univ singap...
  • 3 篇 univ bonab elect...
  • 3 篇 natl yunlin univ...
  • 3 篇 univ windsor dep...
  • 3 篇 riverside res be...
  • 2 篇 shandong normal ...
  • 2 篇 yunnan normal un...
  • 2 篇 department of ag...
  • 2 篇 univ bonab dept ...

作者

  • 11 篇 mohammadzadeh ar...
  • 7 篇 arani atefeh haj...
  • 6 篇 otadi mahmood
  • 6 篇 omidi mohammad j...
  • 5 篇 jafarian ahmad
  • 5 篇 mosleh maryam
  • 5 篇 mehbodniya abolf...
  • 4 篇 xu yuhua
  • 4 篇 lee shie-jue
  • 4 篇 jafarian a.
  • 4 篇 adachi fumiyuki
  • 4 篇 polycarpou mm
  • 3 篇 han xiaohong
  • 3 篇 li xin
  • 3 篇 ghritlahre haris...
  • 3 篇 liu yang
  • 3 篇 graham james
  • 3 篇 otadi m.
  • 3 篇 haddadnia j
  • 3 篇 kim sungwook

语言

  • 679 篇 英文
  • 48 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"主题词=Learning Algorithm"
748 条 记 录,以下是481-490 订阅
排序:
ARTIFICIAL NEURAL NETWORK MODELING OF JATROPHA OIL FUELED DIESEL ENGINE FOR EMISSION PREDICTIONS
收藏 引用
THERMAL SCIENCE 2009年 第3期13卷 91-102页
作者: Ganapathy, Thirunavukkarasu Gakkhar, Rakesh Parkash Murugesan, Krishnan Indian Inst Technol Internal Combust Engines Lab Dept Mech & Ind Engn Roorkee 247667 Uttar Pradesh India
This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been us... 详细信息
来源: 评论
Improving performance of neural classifiers via selective reduction of target levels
收藏 引用
NEUROCOMPUTING 2009年 第13-15期72卷 3020-3027页
作者: Mora-Jimenez, I. Figueiras-Vidal, A. R. Univ Rey Juan Carlos Dept Signal Theory & Commun Madrid 28943 Spain Univ Carlos III Madrid Dept Signal Theory & Commun Madrid 28911 Spain
Reducing the level of the targets corresponding to training samples for a machine classifier using the outputs of an auxiliary classifier is interesting because it allows to save expressive power unnecessarily dedicat... 详细信息
来源: 评论
SPIKING NEURAL NETWORKS
收藏 引用
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS 2009年 第4期19卷 295-308页
作者: Ghosh-Dastidar, Samanwoy Adeli, Hojjat Ohio State Univ Dept Biomed Engn Columbus OH 43210 USA Ohio State Univ Dept Biomed Informat Civil & Environm Engn Columbus OH 43210 USA Ohio State Univ Dept Geodet Sci Elect & Comp Engn Columbus OH 43210 USA Ohio State Univ Dept Neurol Surg & Neurosci Columbus OH 43210 USA
Most current Artificial Neural Network (ANN) models are based on highly simplified brain dynamics. They have been used as powerful computational tools to solve complex pattern recognition, function estimation, and cla... 详细信息
来源: 评论
THE RESEARCH OF THE PARALLEL SMO algorithm FOR SOLVING SVM
THE RESEARCH OF THE PARALLEL SMO ALGORITHM FOR SOLVING SVM
收藏 引用
International Conference on Machine learning and Cybernetics
作者: Peng, Peng Ma, Qian-Li Hong, Lei-Ming S China Univ Technol Guangzhou Guangdong Peoples R China
In order to improve solving Support Vector Machine algorithm, an improved learning algorithm of the parallel SMO is proposed. According to this algorithm, the master CPU averagely distributes primitive training set to... 详细信息
来源: 评论
Implementation Of Recurrent Neural Network And Boosting Method For Time-Series Forecasting
Implementation Of Recurrent Neural Network And Boosting Meth...
收藏 引用
International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering
作者: Soelaiman, Rully Martoyo, Arief Purwananto, Yudhi Purnomo, Mauridhi H. Inst Teknol Sepuluh Nopember Fac Informat Technol Dept Informat Surabaya 60111 Indonesia Inst Teknol Sepuluh Nopember Fac Ind Technol Elect Engn Dept Grad Program Surabaya 60111 Indonesia
Ensemble methods used for classification and regression have been shown that they are superior than other methods, teoritically and empirically. Adapting this method on time-series prediction is done by using boosting... 详细信息
来源: 评论
Discrete Process Neural Networks and Its Application in the Predication of Sunspot Number Series
Discrete Process Neural Networks and Its Application in the ...
收藏 引用
21st Chinese Control and Decision Conference
作者: Li Xin Cheng Chuntian Daqing Petr Inst Sch Comp & Informat Technol Daqing 163318 Peoples R China Dalian Univ Technol Sch Elect & Informat Engn Dalian 116024 Peoples R China Dalian Univ Technol Inst Hydropower Syst & Hydroinformat Dalian 116024 Peoples R China
Considering that inputs of a process neural network (PNN) are generally time-varying functions while the inputs of many practical problems are discrete values of multiple series, in this paper, a process neural networ... 详细信息
来源: 评论
A modified PSO learning algorithm for PID neural network
收藏 引用
25th Chinese Control Conference
作者: Li Ming Yang Chengwu Nanjing Univ Sci & Technol Coll Power Engn Nanjing 210094 Peoples R China
Traditional PED neural network adopts BP learning algorithm. However, without accurate gradients, its initial MSE is too large and the procedure of convergence may be unstable. A modified PSO (MPSO) algorithm is intro... 详细信息
来源: 评论
A HYBRID APPROACH OF NEURAL NETWORK WITH PARTICLE SWARM OPTIMIZATION FOR TOBACCO PESTS PREDICTION  2nd
收藏 引用
2nd IFIP International Conference on Computer and Computing Technologies in Agriculture
作者: Lv, Jiake Wang, Xuan Xie, Deti Wei, Chaofu Chongqing Key Lab Digital Agr Chongqing 400716 Peoples R China
Forecasting pests emergence levels plays a significant role in regional crop planting and management. The accuracy, which is derived from the accuracy of the forecasting approach used, will determine the economics of ... 详细信息
来源: 评论
Method on Designing and Training of Process Neural Network Based on Quantum Genetic algorithm
Method on Designing and Training of Process Neural Network B...
收藏 引用
2nd International Conference on Modelling and Simulation
作者: Dai, Qing Xu, Shao-Hua Li, Xin Daqing Petr Inst Sch Comp & Informat Technol Daqing 163318 Peoples R China
A method for designing and training process neural networks (PNN) based on quantum genetic algorithm (QGA) was presented in this paper. Firstly, an improved quantum genetic algorithm based on Bloch coordinates of qubi... 详细信息
来源: 评论
A Functional Network Modeling Approach for Function Series Expansion
A Functional Network Modeling Approach for Function Series E...
收藏 引用
IEEE International Conference on Intelligent Computing and Intelligent Systems
作者: Luo, Qifang Zhou, Yongquan Wei, Xiuxi Guangxi Univ Nationalities Coll Math & Comp Sci Nanning 530006 Peoples R China Guangxi Int Business Vocat Coll Nanning 530005 Peoples R China
In this paper, a novel function series expansion method based on functional network model is proposed, and a functional network model for functions in several variables series expansion and learning algorithm are give... 详细信息
来源: 评论