咨询与建议

限定检索结果

文献类型

  • 85 篇 会议
  • 39 篇 期刊文献

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 114 篇 工学
    • 104 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 10 篇 软件工程
    • 8 篇 控制科学与工程
    • 6 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
  • 23 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 21 篇 理学
    • 12 篇 生物学
    • 11 篇 数学
    • 1 篇 物理学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 4 篇 农学
    • 3 篇 作物学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 124 篇 learning classif...
  • 28 篇 xcs
  • 16 篇 reinforcement le...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary com...
  • 10 篇 classification
  • 8 篇 generalization
  • 8 篇 data mining
  • 7 篇 machine learning
  • 5 篇 theory
  • 5 篇 extended classif...
  • 4 篇 decision making
  • 4 篇 learning (artifi...
  • 4 篇 accuracy
  • 3 篇 subsumption
  • 3 篇 genetic programm...
  • 3 篇 performance
  • 3 篇 algorithms
  • 3 篇 anticipatory cla...
  • 3 篇 evolutionary mac...

机构

  • 7 篇 univ electrocomm...
  • 5 篇 victoria univ we...
  • 4 篇 univ electrocomm...
  • 4 篇 univ electrocomm...
  • 3 篇 victoria univ we...
  • 3 篇 victoria univ we...
  • 3 篇 yokohama natl un...
  • 3 篇 nanjing univ sta...
  • 3 篇 yokohama natl un...
  • 3 篇 univ bristol bri...
  • 3 篇 univ augsburg or...
  • 3 篇 univ electrocomm...
  • 2 篇 queensland univ ...
  • 2 篇 natl univ def te...
  • 2 篇 univ augsburg au...
  • 2 篇 zhejiang lab peo...
  • 2 篇 univ electrocomm...
  • 2 篇 yokohama natl un...
  • 2 篇 natl chiao tung ...
  • 1 篇 shiraz univ sch ...

作者

  • 22 篇 takadama keiki
  • 21 篇 nakata masaya
  • 7 篇 tatsumi takato
  • 7 篇 browne will n.
  • 6 篇 sato hiroyuki
  • 5 篇 xue bing
  • 5 篇 kovacs tim
  • 5 篇 lanzi pier luca
  • 5 篇 liu yi
  • 4 篇 gao yang
  • 4 篇 moore jason h.
  • 3 篇 urbanowicz ryan ...
  • 3 篇 shoeleh farzaneh
  • 3 篇 abbass hussein a...
  • 3 篇 komine takahiro
  • 3 篇 hashemi sattar
  • 3 篇 pinngern ouen
  • 3 篇 masaya nakata
  • 3 篇 keiki takadama
  • 3 篇 zhang mengjie

语言

  • 122 篇 英文
  • 2 篇 中文
检索条件"主题词=Learning Classifier System"
124 条 记 录,以下是11-20 订阅
排序:
Exemplar-Based learning classifier system with Dynamic Matching Range for Imbalanced Data
收藏 引用
JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2017年 第5期21卷 868-875页
作者: Matsushima, Hiroyasu Takadama, Keiki Natl Inst Adv Ind Sci & Technol Tsukuba Ctr 1 1-1-1 Umezono Tsukuba Ibaraki 3058560 Japan Univ Electrocommun 1-5-1 Chofugaoka Chofu Tokyo 1828585 Japan
In this paper, we propose a method to improve ECS-DMR which enables appropriate output for imbalanced data sets. In order to control generalization of LCS in imbalanced data set, we propose a method of applying imbala... 详细信息
来源: 评论
Customer satisfaction prediction with Michigan-style learning classifier system
收藏 引用
SN APPLIED SCIENCES 2019年 第11期1卷 1450页
作者: Borna, Keivan Hoseini, Shokoofeh Aghaei, Mohammad Ali Mehdi Kharazmi Univ Fac Math & Comp Sci Dept Comp Sci Tehran Iran Kharazmi Univ Fac Management Dept IT Management Tehran Iran Islamic Azad Univ Dept IT Management Res & Sci Branch Tehran Iran
Many different classification algorithms can be use in order to analyze, classify and predict data. learning classifier system (LCS) which is known as a genetic base machine learning system, combines the machine learn... 详细信息
来源: 评论
A Phenotypic learning classifier system for Problems with Continuous Features
A Phenotypic Learning Classifier System for Problems with Co...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Liu, Yi Cui, Yu Cheng, Wen Browne, Will N. Xue, Bing Zhu, Chengyuan Zhang, Yiding Sheng, Mingkai Zeng, Lingfang Zhejiang Lab Hangzhou Zhejiang Peoples R China Queensland Univ Technol Brisbane Qld Australia Victoria Univ Wellington Wellington New Zealand HaiNan Normal Univ Haikou Hainan Peoples R China
Over the past four decades, learning classifier systems (LCSs) have faced challenges in producing accurate and interpretable models for domains with continuous features, mainly due to the irrelevance issue caused by g... 详细信息
来源: 评论
The Bayesian learning classifier system: Implementation, Replicability, Comparison with XCSF
The Bayesian Learning Classifier System: Implementation, Rep...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Paetzel, David Haehner, Joerg Univ Augsburg Augsburg Germany
learning classifier systems (LCSs) are a family of versatile rule-based machine learning algorithms. Despite their long research history, the foundations of most LCSs are still informal due to them having been develop... 详细信息
来源: 评论
From Extraction to Generation of Design Information Paradigm Shift in Data Mining via Evolutionary learning classifier system
From Extraction to Generation of Design Information Paradigm...
收藏 引用
International Conference on Computational Science (ICCS)
作者: Chiba, Kazuhisa Nakata, Masaya Univ Electrocommun Tokyo Japan Yokohama Natl Univ Yokohama Kanagawa Japan
This paper aims at generating as well as extracting design strategies for a real world problem using an evolutionary learning classifier system. Data mining for a design optimization result as a virtual database speci... 详细信息
来源: 评论
On the use of rule-sharing in learning classifier system ensembles
On the use of rule-sharing in learning classifier system ens...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Bull, L Studley, M Bagnall, T Whittley, I Univ W England Sch Comp Sci Bristol BS16 1QY Avon England
This paper presents an investigation into exploiting the population-based nature of learning classifier systems for their use within highly-parallel systems. In particular, the use of simple accuracy-based learning Cl... 详细信息
来源: 评论
Semi-Supervised learning classifier system Based on Bayes
Semi-Supervised Learning Classifier System Based on Bayes
收藏 引用
3rd International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2011)
作者: Li, Guoqiang Zou, Hua Yang, Fangchun Beijing Univ Posts & Telecommun Network Technol Res Inst Beijing 100876 Peoples R China
The high interpretability and the extraordinary evolvability of learning classifier system make it the optimal choice to build an adaptive intelligent system, and UCS is one of its branches, which is especially design... 详细信息
来源: 评论
Waterbus route optimization by Pittsburgh-style learning classifier system
Waterbus route optimization by Pittsburgh-style Learning Cla...
收藏 引用
Annual Conference on the Society-of-Instrument-and-Control-Engineers
作者: Sato, Keiji Takadama, Keiki Univ Electrocommun Dept Human Commun Tokyo 1828585 Japan
When a disaster occurs in the city center and roads and railroads etc. become unable to use, the waterbus has the great potential vehicles to transport passengers and several supplies. Since the number of passengers i... 详细信息
来源: 评论
Reward allotment considered roles for learning classifier system for soccer video games
Reward allotment considered roles for learning classifier sy...
收藏 引用
IEEE Symposium on Computational Intelligence and Games
作者: Akatsuka, Yosuke Sato, Yuji Hosei Univ 3-7-2 Kajino Cho Koganei Tokyo 1848584 Japan
In recent years, the video-game environment has begun to change due to the explosive growth of the Internet. As a result, it makes the time for maintenance longer and the development cost increased. In addition, the l... 详细信息
来源: 评论
Voting-XCSc: A Consensus Clustering Method via learning classifier system
Voting-XCSc: A Consensus Clustering Method via Learning Clas...
收藏 引用
14th International Conference on Intelligent Data Engineering and Automated learning (IDEAL)
作者: Qian, Liqiang Shi, Yinghuan Gao, Yang Yin, Hujun Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China Nanjing Univ State Key Lab Novel Software & Technol Nanjing Peoples R China Univ Manchester Sch Elect & Elect Engn Manchester M13 9PL Lancs England
In this article, a novel consensus clustering method (voting-XCSc) via learning classifier system is proposed, which aims (1) to automatically determine the clustering number and (2) to achieve consensus results by re... 详细信息
来源: 评论