咨询与建议

限定检索结果

文献类型

  • 85 篇 会议
  • 39 篇 期刊文献

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 114 篇 工学
    • 104 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 10 篇 软件工程
    • 8 篇 控制科学与工程
    • 6 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
  • 23 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 21 篇 理学
    • 12 篇 生物学
    • 11 篇 数学
    • 1 篇 物理学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 4 篇 农学
    • 3 篇 作物学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 124 篇 learning classif...
  • 28 篇 xcs
  • 16 篇 reinforcement le...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary com...
  • 10 篇 classification
  • 8 篇 generalization
  • 8 篇 data mining
  • 7 篇 machine learning
  • 5 篇 theory
  • 5 篇 extended classif...
  • 4 篇 decision making
  • 4 篇 learning (artifi...
  • 4 篇 accuracy
  • 3 篇 subsumption
  • 3 篇 genetic programm...
  • 3 篇 performance
  • 3 篇 algorithms
  • 3 篇 anticipatory cla...
  • 3 篇 evolutionary mac...

机构

  • 7 篇 univ electrocomm...
  • 5 篇 victoria univ we...
  • 4 篇 univ electrocomm...
  • 4 篇 univ electrocomm...
  • 3 篇 victoria univ we...
  • 3 篇 victoria univ we...
  • 3 篇 yokohama natl un...
  • 3 篇 nanjing univ sta...
  • 3 篇 yokohama natl un...
  • 3 篇 univ bristol bri...
  • 3 篇 univ augsburg or...
  • 3 篇 univ electrocomm...
  • 2 篇 queensland univ ...
  • 2 篇 natl univ def te...
  • 2 篇 univ augsburg au...
  • 2 篇 zhejiang lab peo...
  • 2 篇 univ electrocomm...
  • 2 篇 yokohama natl un...
  • 2 篇 natl chiao tung ...
  • 1 篇 shiraz univ sch ...

作者

  • 22 篇 takadama keiki
  • 21 篇 nakata masaya
  • 7 篇 tatsumi takato
  • 7 篇 browne will n.
  • 6 篇 sato hiroyuki
  • 5 篇 xue bing
  • 5 篇 kovacs tim
  • 5 篇 lanzi pier luca
  • 5 篇 liu yi
  • 4 篇 gao yang
  • 4 篇 moore jason h.
  • 3 篇 urbanowicz ryan ...
  • 3 篇 shoeleh farzaneh
  • 3 篇 abbass hussein a...
  • 3 篇 komine takahiro
  • 3 篇 hashemi sattar
  • 3 篇 pinngern ouen
  • 3 篇 masaya nakata
  • 3 篇 keiki takadama
  • 3 篇 zhang mengjie

语言

  • 122 篇 英文
  • 2 篇 中文
检索条件"主题词=Learning Classifier System"
124 条 记 录,以下是81-90 订阅
排序:
Towards Final Rule Set Reduction in XCS: A Fuzzy Representation Approach  11
Towards Final Rule Set Reduction in XCS: A Fuzzy Representat...
收藏 引用
13th Annual Genetic and Evolutionary Computation Conference (GECCO)
作者: Shoeleh, Farzaneh Hamzeh, Ali Hashemi, Sattar Shiraz Univ Dept Comp Sci & Engn Shiraz Iran
Generalization is the most challenging issue in XCS research area. One of the main components of XCS managing to remedy this issue is knowledge representation. In this paper, a knowledge representation based on fuzzy ... 详细信息
来源: 评论
Local Covering: Adaptive Rule Generation Method Using Existing Rules for XCS
Local Covering: Adaptive Rule Generation Method Using Existi...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Tadokoro, Masakazu Hasegawa, Satoshi Tatsumi, Takato Sato, Hiroyuki Takadama, Keiki Univ Electrocommun Tokyo Japan
This paper focuses on the covering mechanism in learning classifier system (LCS) which generates a new classifier (i.e., an if-then rule) when no classifier matches the input. We propose Local Covering, a niche-based ... 详细信息
来源: 评论
An anticipatory approach to improve XCSF  06
An anticipatory approach to improve XCSF
收藏 引用
8th Annual Genetic and Evolutionary Computation Conference
作者: Nikanjam, Amin Rahmani, Adel Iran Univ Sci & Technol Dept Comp Engn Tehran *** Iran
XCSF is a novel version of learning classifier systems (LCS) which extends the typical concept of LCS by introducing computable classifier prediction. In XCSF classifier prediction is computed as a linear combination ... 详细信息
来源: 评论
Archives-holding XCS classifier system: A Preliminary Study  6
Archives-holding XCS Classifier System: A Preliminary Study
收藏 引用
6th World Congress on Nature and Biologically Inspired Computing (NaBIC)
作者: Komine, Takahiro Nakata, Masaya Takadama, Keiki Univ Electrocommun Dept Informat Tokyo Japan
In dynamic environment, learning classifier system (LCS) evolves classifiers to fit the current situation, but may forget classifiers which were useful for previous situations. Our main idea is that, we store the forg... 详细信息
来源: 评论
Combining Software and Hardware LCS for Lightweight On-Chip learning  7th
Combining Software and Hardware LCS for Lightweight On-Chip ...
收藏 引用
IFIP/SEC Conference as part of the 21st IFIP World Computer Congress (WCC)
作者: Bernauer, Andreas Zeppenfeld, Johannes Bringmann, Oliver Herkersdorf, Andreas Rosenstiel, Wolfgang Univ Tubingen D-72076 Tubingen Germany Tech Univ Munich D-80290 Munich Germany Forschungszentrum Informat D-76131 Karlsruhe Germany
In this paper we present a novel two-stage method to realize a lightweight but very capable hardware implementation of a learning classifier system for on-chip learning. learning classifier systems (LCS) allow taking ... 详细信息
来源: 评论
Flexible classifier selection for accuracy-based classifier systems
Flexible classifier selection for accuracy-based classifier ...
收藏 引用
International Multiconference of Engineers and Computer Scientists
作者: Aryan, Mashall Hashemi, Sattar Analoui, Morteza Iran Univ Sci & Technol Tehran Iran
The XCS classifier system has shown to solve typical classification problems competitively to other machine learning algorithms. This paper is to introduce a flexible classifier selection method in which mach-set gene... 详细信息
来源: 评论
Theoretical Adaptation of Multiple Rule-Generation in XCS  18
Theoretical Adaptation of Multiple Rule-Generation in XCS
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Nakata, Masaya Browne, Will Hamagami, Tomoki Yokohama Natl Univ Tokiwadai 79-5 Yokohama Kanagawa Japan Victoria Univ Wellington Wellington 6140 New Zealand
Most versions of the XCS classifier system have been designed to evolve only two rules for each rule discovery invocation, which restricts the search capacity. A difficulty behind generating multiple rules each time i... 详细信息
来源: 评论
Online, GA based Mixture of Experts: a Probabilistic Model of UCS  11
Online, GA based Mixture of Experts: a Probabilistic Model o...
收藏 引用
13th Annual Genetic and Evolutionary Computation Conference (GECCO)
作者: Edakunni, Narayanan U. Brown, Gavin Kovacs, Tim Univ Bristol Dept Comp Sci Bristol BS8 1TH Avon England Univ Manchester Sch Comp Sci Manchester Lancs England
In recent years there have been efforts to develop a probabilistic framework to explain the workings of a learning classifier system. This direction of research has met with limited success due to the intractability o... 详细信息
来源: 评论
Convergence Analysis of Rule-Generality on the XCS classifier system
Convergence Analysis of Rule-Generality on the XCS Classifie...
收藏 引用
2nd Genetic and Evolutionary Computation Conference (GECCO)
作者: Nakamura, Yoshiki Horiuchi, Motoki Nakata, Masaya Yokohama Natl Univ Yokohama Kanagawa Japan
The XCS classifier system adaptively controls a rule-generality of a rule-condition through a rule-discovery process. However, there is no proof that the rule-generality can eventually converge to its optimum value ev... 详细信息
来源: 评论
LCS-Based Automatic Configuration of Approximate Computing Parameters for FPGA system Designs  19
LCS-Based Automatic Configuration of Approximate Computing P...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Conrady, Simon Manuel, Manu Kreddig, Arne Stechele, Walter Arnold & Richter Cine Tech Munich Germany Tech Univ Munich Munich Germany SmartRay GmbH Wolfratshausen Germany
In application domains like data analysis or image processing, ever-increasing performance demands push the capabilities of computational systems to their limits. With technology scaling plateauing out, engineers are ... 详细信息
来源: 评论