咨询与建议

限定检索结果

文献类型

  • 8,556 篇 会议
  • 4,655 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,222 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,764 篇 工学
    • 11,940 篇 计算机科学与技术...
    • 9,538 篇 软件工程
    • 1,725 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,458 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 591 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 340 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 306 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 142 篇 土木工程
  • 5,693 篇 理学
    • 3,342 篇 数学
    • 1,901 篇 生物学
    • 1,291 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 669 篇 系统科学
    • 247 篇 化学
  • 2,184 篇 管理学
    • 1,359 篇 图书情报与档案管...
    • 887 篇 管理科学与工程(可...
    • 442 篇 工商管理
  • 673 篇 医学
    • 522 篇 基础医学(可授医学...
    • 517 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 337 篇 法学
    • 319 篇 社会学
  • 189 篇 教育学
    • 179 篇 教育学
  • 159 篇 经济学
    • 154 篇 应用经济学
  • 141 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,222 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 71 篇 machine learning
  • 59 篇 neural network
  • 49 篇 algorithms
  • 32 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 26 篇 classifiers
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 22 篇 google research
  • 21 篇 tsinghua univers...
  • 20 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 18 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 liu yang
  • 20 篇 tao dacheng
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,827 篇 英文
  • 239 篇 其他
  • 98 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13222 条 记 录,以下是101-110 订阅
On PAC learning algorithms for rich boolean function classes
On PAC learning algorithms for rich boolean function classes
收藏 引用
3rd International Conference on Theory and Applications of Models of Computation (TAMC 2006)
作者: Servedio, Rocco A. Columbia Univ Dept Comp Sci New York NY USA
We survey the fastest known algorithms for learning various expressive classes of Boolean functions in the Probably Approximately Correct (PAC) learning model.
来源: 评论
Sample and Computationally Efficient learning algorithms under S-Concave Distributions  31
Sample and Computationally Efficient Learning Algorithms und...
收藏 引用
31st Annual Conference on Neural Information Processing Systems (NIPS)
作者: Balcan, Maria-Florina Zhang, Hongyang Carnegie Mellon Univ Machine Learning Dept Pittsburgh PA 15213 USA
We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and in... 详细信息
来源: 评论
Accelerated Gradient Temporal Difference learning algorithms
Accelerated Gradient Temporal Difference Learning Algorithms
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning (ADPRL)
作者: Meyer, Dominik Degenne, Remy Omrane, Ahmed Shen, Hao Tech Univ Munich Inst Data Proc D-80290 Munich Germany
In this paper we study Temporal Difference (TD) learning with linear value function approximation. The classic TD algorithm is known to be unstable with linear function approximation and off-policy learning. Recently ... 详细信息
来源: 评论
Shallow Parsing for Hindi - An extensive analysis of sequential learning algorithms using a large annotated corpus
Shallow Parsing for Hindi - An extensive analysis of sequent...
收藏 引用
IEEE International Advance Computing Conference
作者: Gahlot, Himanshu Krishnarao, Awaghad Ashish Kushwaha, D. S. Motilal Nehru Natl Inst Technol Allahabad 211004 Uttar Pradesh India
In this paper, we provide the first comprehensive comparison of methods for part-of-speech tagging and chunking for Hindi. We present an analysis of the application of three major learning algorithms (viz. Maximum Ent... 详细信息
来源: 评论
A general class of no-regret learning algorithms and game-theoretic equilibria
收藏 引用
16th Annual Conference on learning Theory/7th Annual Workshop on Kernel Machines
作者: Greenwald, A Jafari, A Brown Univ Dept Comp Sci Providence RI 02906 USA Brown Univ Dept Math Providence RI 02906 USA
A general class of no-regret learning algorithms, called Phi-no-regret learning algorithms is defined, which spans the spectrum from no-internal-regret learning to no-external-regret learning, and beyond. Phi describe... 详细信息
来源: 评论
On the Consistency Rate of Decision Tree learning algorithms  26
On the Consistency Rate of Decision Tree Learning Algorithms
收藏 引用
26th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Zheng, Qin-Cheng Lyu, Shen-Huan Zhang, Shao-Qun Jiang, Yuan Zhou, Zhi-Hua Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Peoples R China
Decision tree learning algorithms such as CART are generally based on heuristics that maximizes the purity gain greedily. Though these algorithms are practically successful, theoretical properties such as consistency ... 详细信息
来源: 评论
On-Line Handwriting Recognition with Parallelized Machine learning algorithms
On-Line Handwriting Recognition with Parallelized Machine Le...
收藏 引用
33rd Annual German Conference on Artificial Intelligence (KI)
作者: Bothe, Sebastian Gaertner, Thomas Wrobel, Stefan Univ Bonn Dept Comp Sci 3 Bonn Germany Fraunhofer Inst Intelligente Anal & Informat Sch Birlinghoven D-53754 St Augustin Germany
The availability of mobile devices without a keypad like Apple's iPad and iPhone grows continuously and the demand for sophisticated input methods with them. In this paper we present classifiers for on-line handwr... 详细信息
来源: 评论
Piecewise linear model tree: a modified combination of two learning algorithms for neuro-fuzzy models
Piecewise linear model tree: a modified combination of two l...
收藏 引用
IEEE International Conference on Control Applications
作者: Jamab, Atiye Sarabi Araabi, Babak N. Malek Ashtar Univ Technol Dept Elect Engn Tehran Iran Univ Tehran Control & Intelligent Process Ctr Excellence Elect & Comp Engn Dept Tehran 14174 Iran
Locally Linear Model Tree (LOLIMOT) and Piecewise Linear Network (PLN) learning algorithms are two approaches in local linear modeling use different algorithm in each part of training phase. PLN learning is more depen... 详细信息
来源: 评论
Open Problem: Better Differentially Private learning algorithms with Margin Guarantees  35
Open Problem: Better Differentially Private Learning Algorit...
收藏 引用
35th Conference on learning Theory (COLT)
作者: Bassily, Raef Mohri, Mehryar Suresh, Ananda Theertha Ohio State Univ Columbus OH 43210 USA Google Res NY New York NY 10001 USA Courant Inst Math Sci New York NY USA Google Res New York NY USA
The design of efficient differentially private (DP) learning algorithms with dimension-independent learning guarantees has been one of the central challenges in the field of privacy-preserving machine learning. Existi... 详细信息
来源: 评论
Overview of some incremental learning algorithms
Overview of some incremental learning algorithms
收藏 引用
IEEE International Conference on Fuzzy Systems
作者: Bouchachia, Abdelhamid Gabrys, Bogdan Sahel, Zoheir Univ Klagenfurt Dept Informat Grp Software Engn & Soft Comp Univ Str 65 A-9020 Klagenfurt Austria Bournemouth Univ Sch Design Engn & Comp Computat Intelligence Res Grp Poole BH12 5BB Dorset England
Incremental learning (IL) plays a key role in many real-world applications where data arrives over time. It is mainly concerned with learning models in an ever-changing environment. In this paper, we review some of th... 详细信息
来源: 评论