咨询与建议

限定检索结果

文献类型

  • 8,556 篇 会议
  • 4,655 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,222 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,764 篇 工学
    • 11,940 篇 计算机科学与技术...
    • 9,538 篇 软件工程
    • 1,725 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,458 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 591 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 340 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 306 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 142 篇 土木工程
  • 5,693 篇 理学
    • 3,342 篇 数学
    • 1,901 篇 生物学
    • 1,291 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 669 篇 系统科学
    • 247 篇 化学
  • 2,184 篇 管理学
    • 1,359 篇 图书情报与档案管...
    • 887 篇 管理科学与工程(可...
    • 442 篇 工商管理
  • 673 篇 医学
    • 522 篇 基础医学(可授医学...
    • 517 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 337 篇 法学
    • 319 篇 社会学
  • 189 篇 教育学
    • 179 篇 教育学
  • 159 篇 经济学
    • 154 篇 应用经济学
  • 141 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,222 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 71 篇 machine learning
  • 59 篇 neural network
  • 49 篇 algorithms
  • 32 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 26 篇 classifiers
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 22 篇 google research
  • 21 篇 tsinghua univers...
  • 20 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 18 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 liu yang
  • 20 篇 tao dacheng
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,827 篇 英文
  • 239 篇 其他
  • 98 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13222 条 记 录,以下是151-160 订阅
On learning algorithms for Nash Equilibria
On Learning Algorithms for Nash Equilibria
收藏 引用
3rd International Symposium on Algorithmic Game Theory
作者: Daskalakis, Constantinos Frongillo, Rafael Papadimitriou, Christos H. Pierrakos, George Valiant, Gregory MIT Cambridge MA 02139 USA UC Berkeley CA USA
Can learning algorithms find a Nash equilibrium? This is a natural question for several reasons. learning algorithms resemble the behavior of players in many naturally arising games, and thus results on the convergenc... 详细信息
来源: 评论
Absorbing stochastic estimator learning algorithms with high accuracy and rapid convergence
Absorbing stochastic estimator learning algorithms with high...
收藏 引用
1st ACS/IEEE International Conference on Computer Systems and Applications
作者: Papadimitriou, GI Pomportsis, AS Kiritsi, S Talahoupi, E Aristotle Univ Dept Informat Thessaloniki 54006 Greece
An absorbing learning automaton which is based on the use of a stochastic estimator is introduced. According to the proposed stochastic estimator scheme, the estimates of the reward probabilities are computed stochast... 详细信息
来源: 评论
Adaptiveness and Consistency of Expert Based learning algorithms Selecting Reactions to Human Movements
Adaptiveness and Consistency of Expert Based Learning Algori...
收藏 引用
American Control Conference (ACC)
作者: Young, Carol Khan, Ayesha Zhang, Fumin Georgia Inst Technol Sch Elect & Comp Engn Atlanta GA 30332 USA
Expert based learning algorithms have been used by robots to choose satisfying reactions to human movements. These algorithms often demonstrate random performance that tries to hit a balance between adaptiveness and c... 详细信息
来源: 评论
On the generalization of learning algorithms that do not converge  36
On the generalization of learning algorithms that do not con...
收藏 引用
36th Conference on Neural Information Processing Systems (NeurIPS)
作者: Chandramoorthy, Nisha Loukas, Andreas Gatmiry, Khashayar Jegelka, Stefanie MIT Inst Data Syst & Soc Cambridge MA 02139 USA Roche Genentech Prescient Design Basel Switzerland MIT Elect Engn & Comp Sci Cambridge MA 02139 USA
Generalization analyses of deep learning typically assume that the training converges to a fixed point. But, recent results indicate that in practice, the weights of deep neural networks optimized with stochastic grad... 详细信息
来源: 评论
Bankruptcy prediction using connectionist and symbolic learning algorithms
Bankruptcy prediction using connectionist and symbolic learn...
收藏 引用
2nd IEEE World Congress on Computational Intelligence (WCCI 98)
作者: Martineli, E Diniz, H de Carvalho, ACPLF Rezende, SO Univ Sao Paulo Dept Comp Sci Lab Computat Intelligence LABIC BR-13560970 Sao Carlos SP Brazil
This article describes the use of connectionist and symbolic learning algorithms in the problem of Bankruptcy Prediction. Data about Brazilian banks represented by 26 or 10 indicators of their current financial situat... 详细信息
来源: 评论
Parallel, finite-convergence learning algorithms for relaxation label processes
Parallel, finite-convergence learning algorithms for relaxat...
收藏 引用
1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 97)
作者: Zhuang, XH Zhao, YX Univ of Missouri Columbia United States
This paper is theoretical. We present sufficient and ''almost'' necessary conditions for learning compatibility coefficients in relaxation labeling whose satisfaction will guarantee each desired sample... 详细信息
来源: 评论
Evaluation of Machine learning algorithms for Worker's Motion Recognition Using Motion Sensors
Evaluation of Machine Learning Algorithms for Worker's Motio...
收藏 引用
ASCE International Conference on Computing in Civil Engineering (i3CE)
作者: Kim, Kinam Chen, Jingdao Cho, Yong K. Georgia Inst Technol Sch Civil & Environm Engn 790 Atlantic Dr Atlanta GA 30332 USA Georgia Inst Technol Inst Robot & Intelligent Machines 790 Atlantic Dr Atlanta GA 30332 USA
Construction tasks involve various activities composed of one or more body motions. It is essential to understand the dynamically changing behavior and state of construction workers to manage construction workers effe... 详细信息
来源: 评论
FABLE : A Development and Computing Framework for Brain-inspired learning algorithms
FABLE : A Development and Computing Framework for Brain-insp...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Pang, Meng Li, Yuchen Li, Zhaolin Zhang, Youhui Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Zhongguancun Lab Beijing Peoples R China
Spiking neural networks (SNNs) have received extensive attention in multi-disciplinary fields, due to their rich spatiotemporal dynamics and the potential for low processing delay and high energy efficiency on neuromo... 详细信息
来源: 评论
On optimal learning algorithms for multiplicity automata
收藏 引用
19th Annual Conference on learning Theory (COLT 2006)
作者: Bisht, Laurence Bshouty, Nader H. Mazzawi, Hanna Technion Israel Inst Technol Dept Comp Sci IL-32000 Haifa Israel
We study polynomial time learning algorithms for Multiplicity Automata (MA) and Multiplicity Automata Function (MAF) that minimize the access to one or more of the following resources: Equivalence queries, Membership ... 详细信息
来源: 评论
CPL Criterion Functions and learning algorithms Linked to the Linear Separability Concept
<i>CPL</i> Criterion Functions and Learning Algorithms Linke...
收藏 引用
14th International Conference on Engineering Applications of Neural Networks (EANN)
作者: Bobrowski, Leon Bialystok Tech Univ Fac Comp Sci Bialystok Poland
Linear separabilty of learning sets is a basic concept of neural networks theory. Exploration of the linear separability can be based on the minimization of the perceptron criterion function. Modification of the perce... 详细信息
来源: 评论