咨询与建议

限定检索结果

文献类型

  • 8,592 篇 会议
  • 4,539 篇 期刊文献
  • 6 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,140 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,736 篇 工学
    • 11,984 篇 计算机科学与技术...
    • 9,579 篇 软件工程
    • 1,724 篇 生物工程
    • 1,627 篇 信息与通信工程
    • 1,453 篇 控制科学与工程
    • 1,174 篇 电气工程
    • 589 篇 生物医学工程(可授...
    • 351 篇 机械工程
    • 340 篇 光学工程
    • 319 篇 电子科学与技术(可...
    • 303 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 201 篇 动力工程及工程热...
    • 175 篇 仪器科学与技术
    • 145 篇 土木工程
  • 5,605 篇 理学
    • 3,385 篇 数学
    • 1,857 篇 生物学
    • 1,295 篇 统计学(可授理学、...
    • 789 篇 物理学
    • 670 篇 系统科学
    • 239 篇 化学
  • 2,176 篇 管理学
    • 1,362 篇 图书情报与档案管...
    • 876 篇 管理科学与工程(可...
    • 439 篇 工商管理
  • 618 篇 医学
    • 514 篇 临床医学
    • 467 篇 基础医学(可授医学...
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 321 篇 社会学
  • 188 篇 教育学
    • 180 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 133 篇 农学
  • 86 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,140 篇 learning algorit...
  • 96 篇 neural networks
  • 68 篇 learning
  • 54 篇 machine learning
  • 37 篇 neural network
  • 36 篇 algorithms
  • 28 篇 learning (artifi...
  • 25 篇 artificial intel...
  • 24 篇 iterative method...
  • 24 篇 optimization
  • 24 篇 game theory
  • 24 篇 classification
  • 23 篇 learning systems
  • 21 篇 reinforcement le...
  • 21 篇 artificial neura...
  • 21 篇 classifiers
  • 20 篇 dataset
  • 19 篇 training
  • 18 篇 genetic algorith...
  • 18 篇 iterative learni...

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 22 篇 mohri mehryar
  • 21 篇 levine sergey
  • 21 篇 tao dacheng
  • 20 篇 liu yang
  • 15 篇 precup doina
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 moran shay
  • 14 篇 bengio yoshua
  • 13 篇 hanneke steve
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 11,642 篇 英文
  • 1,349 篇 其他
  • 109 篇 中文
  • 17 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 日文
  • 5 篇 西班牙文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13140 条 记 录,以下是4181-4190 订阅
排序:
Application of Deep learning Algorithm in Generator Fault Prediction  3
Application of Deep Learning Algorithm in Generator Fault Pr...
收藏 引用
3rd IEEE International Conference on Automation, Electronics and Electrical Engineering, AUTEEE 2020
作者: Yun, Xia Wu, Haiwei Information Center of Zhejiang University Hangzhou China Nanjing China
Recent rapid development of information and communication technology boosts the advance of distributed management and control system, especially for power system. Massive data and information have been accumulated, ho... 详细信息
来源: 评论
Reinforcement learning dynamics in the infinite memory limit  19
Reinforcement learning dynamics in the infinite memory limit
收藏 引用
19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
作者: Barfuss, Wolfram School of Mathematics University of Leeds United Kingdom Max Planck Institute for Mathematics in the Sciences Leipzig Germany
Reinforcement learning algorithms have been shown to converge to the classic replicator dynamics of evolutionary game theory, which describe the evolutionary process in the limit of an infinite population. However, it... 详细信息
来源: 评论
Sentimental Analysis based on hybrid approach of Latent Dirichlet Allocation and Machine learning for Large-Scale of Imbalanced Twitter Data  3
Sentimental Analysis based on hybrid approach of Latent Diri...
收藏 引用
3rd International Conference on algorithms, Computing and Artificial Intelligence, ACAI 2020
作者: Jamal, Nasir Xianqiao, Chen Hussain Abro, Junaid Tukhtakhunov, Doniyor School of Computer Science and Technology Wuhan University of Technology Wuhan430070 China
Emotions classification in large amount of Twitter's data is very effective to analyze the users' mood about a concerned product, news, topic, and so on. However, it is really a challenging task to extract mea... 详细信息
来源: 评论
A Secure Algorithm for Deep learning Training under GAN Attacks
A Secure Algorithm for Deep Learning Training under GAN Atta...
收藏 引用
2020 IEEE International Conference on Communications, Computing, Cybersecurity, and Informatics, CCCI 2020
作者: Prashar, Aseem Salinas Monroy, Sergio A. Wichita State University Department of Electrical Engineering and Computer Science Wichita United States
Deep neural networks have outperformed traditional machine learning approaches for many tasks, and are the tool of choice in many fields. However, directly applying these techniques in fields that deal with private da... 详细信息
来源: 评论
Reinforcement learning of active learning strategies: An evaluation  20
Reinforcement learning of active learning strategies: An eva...
收藏 引用
20e Extraction et Gestion des Connaissances, EGC 2020 - 20th Conference on Knowledge Extraction and Management, EGC 2020
作者: Desreumaux, Louis Lemaire, Vincent Université de Technologie de Compiègne France Orange Labs
Active learning aims to reduce annotation cost by predicting which samples are useful for a human expert to label. In the literature, most selection strategies are hand-designed, and it has become clear that there is ... 详细信息
来源: 评论
Reliability Evaluation Methods of Deep learning Algorithm in Computer Vision  20
Reliability Evaluation Methods of Deep Learning Algorithm in...
收藏 引用
2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence, RICAI 2020
作者: Xu, Xin Gao, Yan China Electronic Products Reliability and Environmental Testing Research Institute Guangzhou China
With the rapid development of deep learning technology, the application based on deep learning shows explosive growth, especially in the field of computer vision. However, some characteristics of the deep learning alg... 详细信息
来源: 评论
Few is enough: Task-augmented active meta-learning for brain cell classification  23rd
Few is enough: Task-augmented active meta-learning for brain...
收藏 引用
23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Yuan, Pengyu Mobiny, Aryan Jahanipour, Jahandar Li, Xiaoyang Cicalese, Pietro Antonio Roysam, Badrinath Patel, Vishal M. Dragan, Maric Van Nguyen, Hien University of Houston HoustonTX United States National Institutes of Health Bethesda MD United States Johns Hopkins University BaltimoreMD United States
Deep Neural Networks (or DNNs) must constantly cope with distribution changes in the input data when the task of interest or the data collection protocol changes. Retraining a network from scratch to combat this issue... 详细信息
来源: 评论
Multi-class Image Classification Using Deep learning Algorithm  4
Multi-class Image Classification Using Deep Learning Algorit...
收藏 引用
4th International Conference on Advanced Technology and Applied Sciences, ICaTAS 2019
作者: Ezat, W.A. Dessouky, M.M. Ismail, N.A. Department of Computer Science and Engineering Faculty of Electronic Engineering Menoufia University Menouf Menoufia Egypt
Classifying images is a complex problem in the field of computer vision. The deep learning algorithm is a computerized model simulates the human brain functions and operations. Training the deep learning model is a co... 详细信息
来源: 评论
Multi-factor Stock Selecting Model Based on Residual Net and LSTM Deep learning Algorithm
Multi-factor Stock Selecting Model Based on Residual Net and...
收藏 引用
2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, AEECA 2020
作者: Chen, Muhao Guo, Weixia Illinois Institute of Technology Faculty of Education ChicagoIL60616-3793 United States
This paper builds a multi-factor stock selection model based on optimized deep learning algorithms, using SFS, GA and XGBoost for factor combination and feature selection. Besides, applying Multi-LR to integrate Resid... 详细信息
来源: 评论
Scratch Detection of the PET Bottle Preform Based on Deep learning  2
Scratch Detection of the PET Bottle Preform Based on Deep Le...
收藏 引用
2nd International Conference on Information Technology and Computer Application, ITCA 2020
作者: Zhou, Lei Liang, Jianan Cao, Yongjun Institute of Intelligent Manufacturing Gdas Guangdong Key Laboratory of Modern Control Technology Guangzhou China South China Robotics Innovation Research Institute Motion Control and Equipment Center Foshan China
Scratches are a common phenomenon in the production of the PET bottle preform, and traditional inspection by human eyes bring troubles to the automatic production process. In this paper, deep learning algorithm was us... 详细信息
来源: 评论