咨询与建议

限定检索结果

文献类型

  • 8,592 篇 会议
  • 4,563 篇 期刊文献
  • 6 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,164 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,749 篇 工学
    • 11,981 篇 计算机科学与技术...
    • 9,578 篇 软件工程
    • 1,724 篇 生物工程
    • 1,627 篇 信息与通信工程
    • 1,454 篇 控制科学与工程
    • 1,179 篇 电气工程
    • 588 篇 生物医学工程(可授...
    • 351 篇 机械工程
    • 340 篇 光学工程
    • 320 篇 电子科学与技术(可...
    • 303 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 201 篇 动力工程及工程热...
    • 176 篇 仪器科学与技术
    • 145 篇 土木工程
  • 5,629 篇 理学
    • 3,384 篇 数学
    • 1,867 篇 生物学
    • 1,295 篇 统计学(可授理学、...
    • 791 篇 物理学
    • 670 篇 系统科学
    • 239 篇 化学
  • 2,175 篇 管理学
    • 1,362 篇 图书情报与档案管...
    • 875 篇 管理科学与工程(可...
    • 439 篇 工商管理
  • 627 篇 医学
    • 514 篇 临床医学
    • 476 篇 基础医学(可授医学...
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 321 篇 社会学
  • 188 篇 教育学
    • 180 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 135 篇 农学
  • 86 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,164 篇 learning algorit...
  • 98 篇 neural networks
  • 70 篇 learning
  • 56 篇 machine learning
  • 40 篇 neural network
  • 36 篇 algorithms
  • 27 篇 learning (artifi...
  • 25 篇 artificial intel...
  • 24 篇 learning systems
  • 24 篇 iterative method...
  • 24 篇 optimization
  • 24 篇 game theory
  • 24 篇 classification
  • 21 篇 reinforcement le...
  • 21 篇 classifiers
  • 20 篇 dataset
  • 20 篇 artificial neura...
  • 19 篇 training
  • 18 篇 genetic algorith...
  • 18 篇 iterative learni...

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 23 篇 google research
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 19 篇 stanford univ st...
  • 18 篇 mit cambridge ma...

作者

  • 22 篇 mohri mehryar
  • 21 篇 levine sergey
  • 21 篇 tao dacheng
  • 20 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 12 篇 liu tongliang
  • 12 篇 bengio yoshua
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 11,666 篇 英文
  • 1,349 篇 其他
  • 109 篇 中文
  • 17 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 日文
  • 5 篇 西班牙文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13164 条 记 录,以下是4241-4250 订阅
排序:
FEDERATED learning WITH MATCHED AVERAGING  8
FEDERATED LEARNING WITH MATCHED AVERAGING
收藏 引用
8th International Conference on learning Representations, ICLR 2020
作者: Wang, Hongyi Yurochkin, Mikhail Sun, Yuekai Papailiopoulos, Dimitris Khazaeni, Yasaman Department of Computer Sciences University of Wisconsin-Madison United States IBM Research MIT-IBM Watson AI Lab United States Department of Statistics University of Michigan United States Department of Electrical and Computer Engineering University of Wisconsin-Madison United States
Federated learning allows edge devices to collaboratively learn a shared model while keeping the training data on device, decoupling the ability to do model training from the need to store the data in the cloud. We pr... 详细信息
来源: 评论
Automated Real-Time Roadway Asset Inventory using Artificial Intelligence
收藏 引用
TRANSPORTATION RESEARCH RECORD 2020年 第11期2674卷 220-234页
作者: Kargah-Ostadi, Nima Waqar, Ammar Hanif, Adil iENGINEERING Chantilly VA 20152 USA
Roadway asset inventory data are essential in making data-driven asset management decisions. Despite significant advances in automated data processing, the current state of the practice is semi-automated. This paper d... 详细信息
来源: 评论
learning the graphical structure of electronic health records with graph convolutional transformer  34
Learning the graphical structure of electronic health record...
收藏 引用
34th AAAI Conference on Artificial Intelligence, AAAI 2020
作者: Choi, Edward Xu, Zhen Li, Yujia Dusenberry, Michael W. Flores, Gerardo Xue, Emily Dai, Andrew M. Google Mountain View United States DeepMind London United Kingdom
Effective modeling of electronic health records (EHR) is rapidly becoming an important topic in both academia and industry. A recent study showed that using the graphical structure underlying EHR data (e.g. relationsh... 详细信息
来源: 评论
A Web Application for Feral Cat Recognition Through Deep learning  9th
A Web Application for Feral Cat Recognition Through Deep Lea...
收藏 引用
9th International Conference on Big Data, BigData 2020, held as part of the Services Conference Federation, SCF 2020
作者: Zhou, Jingling Wang, Shiyu Chen, Yunxue Sinnott, Richard O. School of Computing and Information Systems University of Melbourne Melbourne Australia
Deep learning has gained much attention and been applied in many different fields. In this paper, we present a web application developed to identify and detect the number of distinct feral cats of Australia using deep... 详细信息
来源: 评论
Why state-of-the-art deep learning barely works as good as a linear classifier in extreme multi-label text classification  28
Why state-of-the-art deep learning barely works as good as a...
收藏 引用
28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine learning, ESANN 2020
作者: Qaraei, Mohammadreza Khandagale, Sujay Babbar, Rohit Aalto University CS Department Helsinki Finland Columbia University CS Department New York United States
Extreme Multi-label Text Classification (XMTC) refers to supervised learning of a classifier which can predict a small subset of relevant labels for a document from an extremely large set. Even though deep learning al... 详细信息
来源: 评论
A deep learning algorithm for detection of potassium deficiency in a red grapevine and spraying actuation using a raspberry pi3
A deep learning algorithm for detection of potassium deficie...
收藏 引用
2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, icABCD 2020
作者: Ukacgbu, Uchechi Tartibu, Lagouge Laseinde, Timothy Okwu, Modestus Olayode, Isaac Department of Mechanical and Industrial Engineering University of Johannesburg Johannesburg South Africa
The fourth industrial revolution (4IR) has ushered in advancement, which is currently reshaping all sectors of the economy. including the agricultural domain. This paper describes the application of artificial intelli... 详细信息
来源: 评论
DeepSeismic: A deep learning library for seismic interpretation  1
DeepSeismic: A deep learning library for seismic interpretat...
收藏 引用
1st EAGE Digitalization Conference and Exhibition
作者: Salvaris, M. Kaznady, M. Paunic, V. Karmanov, I. Bhatia, A. Tok, W.H. Chikkerur, S. Microsoft
We introduce DeepSeismic, an open source Github repository (https://***/microsoft/seismicdeeplearning) that provides implementation of deep learning algorithms for seismic facies interpretation. The repository provide... 详细信息
来源: 评论
Research on Deep learning Algorithm and Application Based on Convolutional Neural Network  1
收藏 引用
Annual International Conference on 3D Imaging Technology, IC3DIT 2019
作者: Guo, Mei Xiao, Min Yu, Fang College of Software and Communication Engineering Xiangnan University ChenzhouHunan423000 China
The field of artificial intelligence has developed rapidly this year, and new high-tech companies with their main business have sprung up. After years of theoretical knowledge accumulation and computer hardware equipm... 详细信息
来源: 评论
A scenario-adaptive online learning algorithm for demand response
A scenario-adaptive online learning algorithm for demand res...
收藏 引用
2020 IEEE Power and Energy Society General Meeting, PESGM 2020
作者: Sang, Linwei Hu, Qinran Zhao, Yuan Han, Rushuai Wu, Zaijun Dou, Xiaobo Southeast University School of Electric Engineering Nanjing China
This paper introduces a scenario-adaptive online learning algorithm for aggregating demand side resources. The problem of dispatching demands is formulated under a contextual combinatorial multi-armed bandit framework... 详细信息
来源: 评论
Designing optimal dynamic treatment regimes: A causal reinforcement learning approach  37
Designing optimal dynamic treatment regimes: A causal reinfo...
收藏 引用
37th International Conference on Machine learning, ICML 2020
作者: Zhang, Junzhe Bareinboim, Elias Department of Computer Science Columbia University New York United States
A dynamic treatment regime (DTR) consists of a sequence of decision rules, one per stage of intervention, that dictates how to determine the treatment assignment to patients based on evolving treatments and covariates... 详细信息
来源: 评论