咨询与建议

限定检索结果

文献类型

  • 8,592 篇 会议
  • 4,539 篇 期刊文献
  • 6 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,140 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,736 篇 工学
    • 11,984 篇 计算机科学与技术...
    • 9,579 篇 软件工程
    • 1,724 篇 生物工程
    • 1,627 篇 信息与通信工程
    • 1,453 篇 控制科学与工程
    • 1,174 篇 电气工程
    • 589 篇 生物医学工程(可授...
    • 351 篇 机械工程
    • 340 篇 光学工程
    • 319 篇 电子科学与技术(可...
    • 303 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 201 篇 动力工程及工程热...
    • 175 篇 仪器科学与技术
    • 145 篇 土木工程
  • 5,605 篇 理学
    • 3,385 篇 数学
    • 1,857 篇 生物学
    • 1,295 篇 统计学(可授理学、...
    • 789 篇 物理学
    • 670 篇 系统科学
    • 239 篇 化学
  • 2,176 篇 管理学
    • 1,362 篇 图书情报与档案管...
    • 876 篇 管理科学与工程(可...
    • 439 篇 工商管理
  • 618 篇 医学
    • 514 篇 临床医学
    • 467 篇 基础医学(可授医学...
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 321 篇 社会学
  • 188 篇 教育学
    • 180 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 133 篇 农学
  • 86 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,140 篇 learning algorit...
  • 96 篇 neural networks
  • 68 篇 learning
  • 54 篇 machine learning
  • 37 篇 neural network
  • 36 篇 algorithms
  • 28 篇 learning (artifi...
  • 25 篇 artificial intel...
  • 24 篇 iterative method...
  • 24 篇 optimization
  • 24 篇 game theory
  • 24 篇 classification
  • 23 篇 learning systems
  • 21 篇 reinforcement le...
  • 21 篇 artificial neura...
  • 21 篇 classifiers
  • 20 篇 dataset
  • 19 篇 training
  • 18 篇 genetic algorith...
  • 18 篇 iterative learni...

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 22 篇 mohri mehryar
  • 21 篇 levine sergey
  • 21 篇 tao dacheng
  • 20 篇 liu yang
  • 15 篇 precup doina
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 moran shay
  • 14 篇 bengio yoshua
  • 13 篇 hanneke steve
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 11,642 篇 英文
  • 1,349 篇 其他
  • 109 篇 中文
  • 17 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 日文
  • 5 篇 西班牙文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13140 条 记 录,以下是4311-4320 订阅
排序:
Noise-Tolerant Coreset-Based Class Incremental Continual learning
arXiv
收藏 引用
arXiv 2025年
作者: Mucllari, Edison Raghavan, Aswin Daniels, Zachary Alan University of Kentucky LexingtonKY United States SRI International PrincetonNJ United States
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to ... 详细信息
来源: 评论
Ensemble of One Model: Creating Model Variations for Transformer with Layer Permutation
Ensemble of One Model: Creating Model Variations for Transfo...
收藏 引用
2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021
作者: Liaw, Andrew Hsu, Jia-Hao Wu, Chung-Hsien National Cheng Kung University Department of Computer Science and Information Engineering Tainan Taiwan
Ensemble involves combining the outputs of multiple models to increase performance. This technique has enjoyed great success across many fields in machine learning. This study focuses on a novel approach to increase p... 详细信息
来源: 评论
Constrained Machine learning Through Hyperspherical Representation
arXiv
收藏 引用
arXiv 2025年
作者: Signorelli, Gaetano Lombardi, Michele University of Bologna Italy
The problem of ensuring constraints satisfaction on the output of machine learning models is critical for many applications, especially in safety-critical domains. Modern approaches rely on penalty-based methods at tr... 详细信息
来源: 评论
Temperature Estimation in Induction Motors using Machine learning
arXiv
收藏 引用
arXiv 2025年
作者: Li, Dinan Kakosimos, Panagiotis ABB AB Corporate Research Västeras Sweden
The number of electrified powertrains is ever increasing today towards a more sustainable future;thus, it is essential that unwanted failures are prevented, and a reliable operation is secured. Monitoring the internal... 详细信息
来源: 评论
CrossedWires: A dataset of syntactically equivalent but semantically disparate deep learning models
arXiv
收藏 引用
arXiv 2021年
作者: Zvyagin, Max Brettin, Thomas Ramanathan, Arvind Jha, Sumit K. Argonne National Laboratory LemontIL64309 United States Computer Science Department University of Texas at San Antonio
The training of neural networks using different deep learning frameworks may lead to drastically differing accuracy levels despite the use of the same neural network architecture and identical training hyperparameters... 详细信息
来源: 评论
Improved learning rates for stochastic optimization: Two theoretical viewpoints
arXiv
收藏 引用
arXiv 2021年
作者: Li, Shaojie Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing Beijing100080 China
Generalization performance of stochastic optimization stands a central place in machine learning. In this paper, we investigate the excess risk performance and towards improved learning rates for two popular approache... 详细信息
来源: 评论
Gating is Weighting: Understanding Gated Linear Attention through In-context learning
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yingcong Tarzanagh, Davoud Ataee Rawat, Ankit Singh Fazel, Maryam Oymak, Samet University of Michigan United States University of Pennsylvania United States Google Research NYC United States University of Washington United States
Linear attention methods offer a compelling alternative to softmax attention due to their efficiency in recurrent decoding. Recent research has focused on enhancing standard linear attention by incorporating gating wh... 详细信息
来源: 评论
Causal representation learning in offline visual reinforcement learning
收藏 引用
Knowledge-Based Systems 2025年 320卷
作者: Zhang, Yaru Chen, Kaizhou Liu, Yunlong Department of Automation Xiamen University Xiamen361005 China
Real-world reinforcement learning (RL) applications contend with high-dimensional visual observations contaminated by confounding factors, which induce spurious correlations and obscure decision-relevant information. ... 详细信息
来源: 评论
PDSL: Privacy-Preserved Decentralized Stochastic learning with Heterogeneous Data Distribution
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Lina Yuan, Yunsheng Wang, Chunxiao Li, Feng School of Computer Science and Technology Shandong University Qingdao China Jinan China Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Shandong Fundamental Research Center for Computer Science Jinan China
In the paradigm of decentralized learning, a group of agents collaborates to learn a global model using distributed datasets without a central server. However, due to the heterogeneity of the local data across the dif... 详细信息
来源: 评论
Adaptive learning algorithm and its convergence analysis with complex-valued error loss network
收藏 引用
Neural Networks 2025年 190卷 107677页
作者: Qian, Guobing Lin, Bingqing Mei, Jiaojiao Qian, Junhui Wang, Shiyuan College of Electronic and Information Engineering Southwest University Chongqing400715 China Cogenda Pte Ltd Jiangsu 215028 China School of Microelectronic and Communication Engineering Chongqing University Chongqing400030 China
In machine learning, the initial task is to construct a model that is capable of predicting the outcomes of new samples with the help of training samples. The loss function plays a key role in this task, as it acts as... 详细信息
来源: 评论