咨询与建议

限定检索结果

文献类型

  • 8,590 篇 会议
  • 4,676 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,277 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,818 篇 工学
    • 11,994 篇 计算机科学与技术...
    • 9,591 篇 软件工程
    • 1,726 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,458 篇 控制科学与工程
    • 1,208 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 342 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,713 篇 理学
    • 3,362 篇 数学
    • 1,902 篇 生物学
    • 1,301 篇 统计学(可授理学、...
    • 792 篇 物理学
    • 670 篇 系统科学
    • 243 篇 化学
  • 2,184 篇 管理学
    • 1,360 篇 图书情报与档案管...
    • 886 篇 管理科学与工程(可...
    • 442 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 337 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 159 篇 经济学
    • 154 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,277 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 21 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,727 篇 英文
  • 390 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13277 条 记 录,以下是4411-4420 订阅
排序:
Impact of Parking Fee on On-Street Night Parking Demand Prediction in Delhi using Machine learning Approaches
收藏 引用
Transportation Research Record 2025年
作者: Bokadia, Ashwani Ahmed, Mokaddes Ali Das, Rajeev Mallik, Saurabh Department of Civil Engineering National Institute of Technology Silchar Assam Silchar India Department of Mathematics Chandigarh University Punjab Mohali India Department of Computer Science and Engineering National Institute of Technology Silchar Assam Silchar India
Parking during night hours is emerging in many residential areas, with limited spaces and high demand. This lack of off-street parking forces residents to rely on on-street parking, especially at night. To date, resea... 详细信息
来源: 评论
Applying Background learning algorithms to Radio Tomographic Imaging
Applying Background Learning Algorithms to Radio Tomographic...
收藏 引用
16th International Symposium on Wireless Personal Multimedia Communications (WPMC)
作者: Men, Aidong Xue, Jianfei Liu, Junyan Xu, Tianming Zheng, Yi Beijing Univ Posts & Telecommun Multimedia Technol Ctr Beijing Peoples R China
Radio tomographic imaging (RTI) is an emerging technique which obtains images of passive targets (i.e., not carrying electronic device) within a wireless sensor network using received signal strength (RSS). One major ... 详细信息
来源: 评论
Instance-dependent Label-noise learning under a Structural Causal Model
arXiv
收藏 引用
arXiv 2021年
作者: Yao, Yu Liu, Tongliang Gong, Mingming Han, Bo Niu, Gang Zhang, Kun University of Sydney Australia University of Melbourne Australia Hong Kong Baptist University Hong Kong RIKEN AIP Japan Carnegie Mellon University United States
Label noise will degenerate the performance of deep learning algorithms because deep neural networks easily overfit label errors. Let X and Y denote the instance and clean label, respectively. When Y is a cause of X, ... 详细信息
来源: 评论
Towards Enabling Meta-learning from Target Models
arXiv
收藏 引用
arXiv 2021年
作者: Lu, Su Ye, Han-Jia Gan, Le Zhan, De-Chuan State Key Laboratory for Novel Software Technology Nanjing University Nanjing210023 China
Meta-learning can extract an inductive bias from previous learning experience and assist the training of new tasks. It is often realized through optimizing a meta-model with the evaluation loss of task-specific solver... 详细信息
来源: 评论
Protaugment: Unsupervised diverse short-texts paraphrasing for intent detection meta-learning
arXiv
收藏 引用
arXiv 2021年
作者: Dopierre, Thomas Gravier, Christophe Logerais, Wilfried Laboratoire Hubert Curien UMR CNRS 5516 Université Jean Monnet Saint-Étienne France Meetic Paris France
Recent research considers few-shot intent detection as a meta-learning problem: the model is learning to learn from a consecutive set of small tasks named episodes. In this work, we propose PROTAUGMENT, a meta-learnin... 详细信息
来源: 评论
learning with different amounts of annotation: From zero to many labels
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Shujian Gong, Chengyue Choi, Eunsol The University of Texas at Austin
Training NLP systems typically assumes access to annotated data that has a single human label per example. Given imperfect labeling from annotators and inherent ambiguity of language, we hypothesize that single label ... 详细信息
来源: 评论
Server-side local gradient averaging and learning rate acceleration for scalable split learning
arXiv
收藏 引用
arXiv 2021年
作者: Pal, Shraman Uniyal, Mansi Park, Jihong Vepakomma, Praneeth Raskar, Ramesh Bennis, Mehdi Jeon, Moongu Choi, Jinho IIT Kharagpur India Deakin University Australia MIT Media Lab United States GIST Korea Republic of University of Oulu Finland
In recent years, there have been great advances in the field of decentralized learning with private data. Federated learning (FL) and split learning (SL) are two spearheads possessing their pros and cons, and are suit... 详细信息
来源: 评论
Sliding mode control for systems with mismatched time-varying uncertainties via a self-learning disturbance observer
arXiv
收藏 引用
arXiv 2021年
作者: Kayacan, Erkan Senseable City Laboratory Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology United States
This paper presents a novel Sliding Mode Control (SMC) algorithm to handle mismatched uncertainties in systems via a novel Self-learning Disturbance Observer (SLDO). A computationally efficient SLDO is developed withi... 详细信息
来源: 评论
Put CASH on Bandits: A Max K-Armed Problem for Automated Machine learning
arXiv
收藏 引用
arXiv 2025年
作者: Balef, Amir Rezaei Vernade, Claire Eggensperger, Katharina Department of Computer Science University of Tübingen Germany
The Combined Algorithm Selection and Hyperparameter optimization (CASH) is a challenging resource allocation problem in the field of AutoML. We propose MaxUCB, a max k-armed bandit method to trade off exploring differ... 详细信息
来源: 评论
CTSKETCH: COMPOSITIONAL TENSOR SKETCHING FOR SCALABLE NEUROSYMBOLIC learning
arXiv
收藏 引用
arXiv 2025年
作者: Choi, Seewon Solko-Breslin, Alaia Alur, Rajeev Wong, Eric University of Pennsylvania United States
Many computational tasks benefit from being formulated as the composition of neural networks followed by a discrete symbolic program. The goal of neurosymbolic learning is to train the neural networks using only end-t... 详细信息
来源: 评论