咨询与建议

限定检索结果

文献类型

  • 8,590 篇 会议
  • 4,676 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,277 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,818 篇 工学
    • 11,994 篇 计算机科学与技术...
    • 9,591 篇 软件工程
    • 1,726 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,458 篇 控制科学与工程
    • 1,208 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 342 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,713 篇 理学
    • 3,362 篇 数学
    • 1,902 篇 生物学
    • 1,301 篇 统计学(可授理学、...
    • 792 篇 物理学
    • 670 篇 系统科学
    • 243 篇 化学
  • 2,184 篇 管理学
    • 1,360 篇 图书情报与档案管...
    • 886 篇 管理科学与工程(可...
    • 442 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 337 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 159 篇 经济学
    • 154 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,277 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 21 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,727 篇 英文
  • 390 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13277 条 记 录,以下是4451-4460 订阅
排序:
Doubly adaptive scaled algorithm for machine learning using second-order information
arXiv
收藏 引用
arXiv 2021年
作者: Jahani, Majid Rusakov, Sergey Shi, Zheng Richtárik, Peter Mahoney, Michael W. Takáč, Martin Lehigh University United States KAUST Saudi Arabia University of California Berkeley United States MBZUAI United Arab Emirates
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search dir... 详细信息
来源: 评论
learning Expected Emphatic Traces for Deep RL
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Ray Zhang, Shangtong Chelu, Veronica White, Adam van Hasselt, Hado DeepMind London United Kingdom University of Oxford Oxford United Kingdom McGill University MontrealQC Canada DeepMind Edmonton Canada
Off-policy sampling and experience replay are key for improving sample efficiency and scaling model-free temporal difference learning methods. When combined with function approximation, such as neural networks, this c... 详细信息
来源: 评论
Federated reconnaissance: Efficient, distributed, class-incremental learning
arXiv
收藏 引用
arXiv 2021年
作者: Hendryx, Sean M. Dharma Raj, K.C. Walls, Bradley Morrison, Clayton T. School of Information University of Arizona Department of Computer Science University of Arizona Areté Associates
We describe federated reconnaissance, a class of learning problems in which distributed clients learn new concepts independently and communicate that knowledge efficiently. In particular, we propose an evaluation fram... 详细信息
来源: 评论
Bayesian Active Meta-learning for Black-Box Optimization
arXiv
收藏 引用
arXiv 2021年
作者: Nikoloska, Ivana Simeone, Osvaldo KCLIP CTR Dept. of Engineering King’s College London United Kingdom
Data-efficient learning algorithms are essential in many practical applications for which data collection is expensive, e.g., for the optimal deployment of wireless systems in unknown propagation scenarios. Meta-learn... 详细信息
来源: 评论
Convergence and accuracy trade-offs in federated learning and meta-learning
arXiv
收藏 引用
arXiv 2021年
作者: Charles, Zachary Konečný, Jakub Google Research United States
We study a family of algorithms, which we refer to as local update methods, generalizing many federated and meta-learning algorithms. We prove that for quadratic models, local update methods are equivalent to first-or... 详细信息
来源: 评论
On sensitivity of meta-learning to support data
arXiv
收藏 引用
arXiv 2021年
作者: Agarwal, Mayank Yurochkin, Mikhail Sun, Yuekai IBM Research MIT-IBM Watson AI Lab University of Michigan
Meta-learning algorithms are widely used for few-shot learning. For example, image recognition systems that readily adapt to unseen classes after seeing only a few labeled examples. Despite their success, we show that... 详细信息
来源: 评论
Reward function shape exploration in adversarial imitation learning: An empirical study
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Yawei Li, Xiu The Shenzhen International Graduate School Tsinghua University Shenzhen China
For adversarial imitation learning algorithms (AILs), no true rewards are obtained from the environment for learning the strategy. However, the pseudo rewards based on the output of the discriminator are still require... 详细信息
来源: 评论
A mathematical foundation for robust machine learning based on bias-variance trade-off
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Ou Zhu, Weiyao Deng, Yingjun Zhang, Haixiang Hou, Qinghu Center for Applied Mathematics Tianjin University Department of Applied Mathematics INSA Rouen France
A common assumption in machine learning is that samples are independently and identically distributed (i.i.d). However, the contributions of different samples are not identical in training. Some samples are difficult ... 详细信息
来源: 评论
Rethinking Image-Scaling Attacks: The Interplay Between Vulnerabilities in Machine learning Systems
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Yue Shumailov, Ilia Fawaz, Kassem University of Wisconsin-Madison MadisonWI United States Vector Institute TorontoON Canada
As real-world images come in varying sizes, the machine learning model is part of a larger system that includes an upstream image scaling algorithm. In this paper, we investigate the interplay between vulnerabilities ... 详细信息
来源: 评论
A New Approach for Active Automata learning Based on Apartness
arXiv
收藏 引用
arXiv 2021年
作者: Vaandrager, Frits Garhewal, Bharat Rot, Jurriaan Wißmann, Thorsten Institute for Computing and Information Sciences Radboud University Nijmegen Netherlands
We present L#, a new and simple approach to active automata learning. Instead of focusing on equivalence of observations, like the L∗algorithm and its descendants, L#takes a different perspective: it tries to establis... 详细信息
来源: 评论