咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4561-4570 订阅
排序:
Sliding Mode learning Control of uncertain nonlinear systems with Lyapunov stability analysis
arXiv
收藏 引用
arXiv 2021年
作者: Kayacan, Erkan Senseable City Laboratory Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology United States
This paper addresses to Sliding Mode learning Control (SMLC) of uncertain nonlinear systems with Lyapunov stability analysis. In the control scheme, a conventional control term is used to provide the system stability ... 详细信息
来源: 评论
Fast federated learning in the presence of arbitrary device unavailability
arXiv
收藏 引用
arXiv 2021年
作者: Gu, Xinran Zhang, Jingzhao Huang, Kaixuan Huang, Longbo Department of Industrial Engineering Tsinghua University China EECS Massachusetts Institute of Technology ECE Princeton University United States IIIS Tsinghua University China
Federated learning (FL) coordinates with numerous heterogeneous devices to collaboratively train a shared model while preserving user privacy. Despite its multiple advantages, FL faces new challenges. One challenge ar... 详细信息
来源: 评论
Laboratory Demonstration of Decentralized, Physics-Driven learning
arXiv
收藏 引用
arXiv 2021年
作者: Dillavou, Sam Stern, Menachem Liu, Andrea J. Durian, Douglas J. Department of Physics and Astronomy University of Pennsylvania 209 South 33rd Street PhiladelphiaPA19104 United States
In typical artificial neural networks, neurons adjust according to global calculations of a central processor, but in the brain neurons and synapses self-adjust based on local information. Contrastive learning algorit... 详细信息
来源: 评论
Automated machine learning techniques for data streams
arXiv
收藏 引用
arXiv 2021年
作者: Imbrea, Alexandru-Ionut University of Twente P.O. Box 217 Enschede7500AE Netherlands
Automated Machine learning (AutoML) techniques benefitted from tremendous research progress recently. These developments and the continuous-growing demand for machine learning experts led to the development of numerou... 详细信息
来源: 评论
Hyperparameter selection for imitation learning
arXiv
收藏 引用
arXiv 2021年
作者: Hussenot, Léonard Andrychowicz, Marcin Vincent, Damien Dadashi, Robert Raichuk, Anton Stafiniak, Lukasz Girgin, Sertan Marinier, Raphael Momchev, Nikola Ramos, Sabela Orsini, Manu Bachem, Olivier Geist, Matthieu Pietquin, Olivier Google Research Brain Team Univ. de Lille CNRS Inria Scool UMR 9189 CRIStAL
We address the issue of tuning hyperparameters (HPs) for imitation learning algorithms in the context of continuous-control, when the underlying reward function of the demonstrating expert cannot be observed at any ti... 详细信息
来源: 评论
IMPROVING FAIRNESS VIA FEDERATED learning
arXiv
收藏 引用
arXiv 2021年
作者: Zeng, Yuchen Chen, Hongxu Lee, Kangwook University of Wisconsin-Madison United States
Recently, lots of algorithms have been proposed for learning a fair classifier from decentralized data. However, many theoretical and algorithmic questions remain open. First, is federated learning necessary, i.e., ca... 详细信息
来源: 评论
Tuning the Weights: The Impact of Initial Matrix Configurations on Successor Features learning Efficacy
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Hyunsu The Faculty of Department of Physiology School of Medicine Pusan National University Yangsan Korea Republic of
The focus of this study is to investigate the impact of different initialization strategies for the weight matrix of Successor Features (SF) on learning efficiency and convergence in Reinforcement learning (RL) agents... 详细信息
来源: 评论
Stragglers are not disaster: A hybrid federated learning algorithm with delayed gradients
arXiv
收藏 引用
arXiv 2021年
作者: Li, Xingyu Qu, Zhe Tang, Bo Lu, Zhuo
Federated learning (FL) is a new machine learning framework which trains a joint model across a large amount of decentralized computing devices. Existing methods, e.g., Federated Averaging (FedAvg), are able to provid... 详细信息
来源: 评论
Enhanced Membership Inference Attacks against Machine learning Models
arXiv
收藏 引用
arXiv 2021年
作者: Ye, Jiayuan Maddi, Aadyaa Murakonda, Sasi Kumar Bindschaedler, Vincent Shokri, Reza National University of Singapore Singapore Privitar Labs University of Florida United States
How much does a machine learning algorithm leak about its training data, and why? Membership inference attacks are used as an auditing tool to quantify this leakage. In this paper, we present a comprehensive hypothesi... 详细信息
来源: 评论
PowerGym: A Reinforcement learning Environment for Volt-Var Control in Power Distribution Systems
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Ting-Han Lee, Xian Yeow Wang, Yubo Princeton University United States Iowa State University United States Siemens Technology
We introduce PowerGym, an open-source reinforcement learning environment for Volt-Var control in power distribution systems. Following OpenAI Gym APIs, PowerGym targets minimizing power loss and voltage violations und... 详细信息
来源: 评论