咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4591-4600 订阅
排序:
Modularity in reinforcement learning via algorithmic independence in credit assignment
arXiv
收藏 引用
arXiv 2021年
作者: Chang, Michael Kaushik, Sidhant Levine, Sergey Griffiths, Thomas L. Department of Computer Science University of California Berkeley United States Department of Computer Science Princeton University United States
Many transfer problems require re-using previously optimal decisions for solving new tasks, which suggests the need for learning algorithms that can modify the mechanisms for choosing certain actions independently of ... 详细信息
来源: 评论
Unsupervised deep learning techniques for powdery mildew recognition based on multispectral imaging
arXiv
收藏 引用
arXiv 2021年
作者: Benfenati, Alessandro Causin, Paola Oberti, Roberto Stefanello, Giovanni Dept. of Environmental Science and Policy Università degli Studi di Milano Milano Italy Dept. of Mathematics Università degli Studi di Milano Milano Italy Dept. of Agricultural and Environmental Sciences - Production Landscape Agroenergy Università degli Studi di Milano Milano Italy
Objectives: Sustainable management of plant diseases is an open challenge which has relevant economic and environmental impact. Optimal strategies rely on human expertise for field scouting under favourable conditions... 详细信息
来源: 评论
Using machine learning to select high-quality measurements
arXiv
收藏 引用
arXiv 2021年
作者: Edmonds, Andrew Brown, David Vinas, Luciano Pagan, Samantha Lawrence Berkeley National Laboratory BerkeleyCA94720 United States University of California BerkeleyCA94720 United States University of North Carolina Chapel HillNC27514 United States
We describe the use of machine learning algorithms to select high-quality measurements for the Mu2e experiment. This technique is important for experiments with backgrounds that arise due to measurement errors. The al... 详细信息
来源: 评论
Multi-Task Federated Reinforcement learning with Adversaries
arXiv
收藏 引用
arXiv 2021年
作者: Anwar, Aqeel Raychowdhury, Arijit Department of Electrical and Computer Engineering Georgia Institute of Technology AtlantaGA United States
Reinforcement learning algorithms, just like any other Machine learning algorithm pose a serious threat from adversaries. The adversaries can manipulate the learning algorithm resulting in non-optimal policies. In thi... 详细信息
来源: 评论
INTERPRETING EMERGENT PLANNING IN MODEL-FREE REINFORCEMENT learning
arXiv
收藏 引用
arXiv 2025年
作者: Bush, Thomas Chung, Stephen Anwar, Usman Garriga-Alonso, Adrià Krueger, David University of Cambridge United Kingdom FAR AI Mila University of Montreal Canada
We present the first mechanistic evidence that model-free reinforcement learning agents can learn to plan. This is achieved by applying a methodology based on concept-based interpretability to a model-free agent in So... 详细信息
来源: 评论
RandomSCM: interpretable ensembles of sparse classifiers tailored for omics data
arXiv
收藏 引用
arXiv 2022年
作者: Godon, Thibaud Plante, Pier-Luc Bauvin, Baptiste Francovic-Fontaine, Élina Drouin, Alexandre Corbeil, Jacques Department of Computer Science and Software Université Laval Canada Department of Molecular Medicine Université Laval Canada Element Ai A ServiceNow Company
Background: Understanding the relationship between the Omics and the phenotype is a central problem in precision medicine. The high dimensionality of metabolomics data challenges learning algorithms in terms of scalab... 详细信息
来源: 评论
Fast Rate Generalization Error Bounds: Variations on a Theme
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Xuetong Manton, Jonathan H. Aickelin, Uwe Zhu, Jingge Department of EEE University of Melbourne ParkvilleVIC Australia Department of CIS University of Melbourne ParkvilleVIC Australia
A recent line of works, initiated by [1] and [2], has shown that the generalization error of a learning algorithm can be upper bounded by information measures. In most of the relevant works, the convergence rate of th... 详细信息
来源: 评论
Breaking Fair Binary Classification with Optimal Flipping Attacks
arXiv
收藏 引用
arXiv 2022年
作者: Jo, Changhun Sohn, Jy-Yong Lee, Kangwook University of Wisconsin-Madison United States
Minimizing risk with fairness constraints is one of the popular approaches to learning a fair classifier. Recent works showed that this approach yields an unfair classifier if the training set is corrupted. In this wo... 详细信息
来源: 评论
Adaptive Federated Minimax Optimization with Lower Complexities
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Feihu Wang, Xinrui Li, Junyi Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States
Federated learning is a popular distributed and privacy-preserving learning paradigm in machine learning. Recently, some federated learning algorithms have been proposed to solve the distributed minimax problems. Howe... 详细信息
来源: 评论
Revisiting dequantization and quantum advantage in learning tasks
arXiv
收藏 引用
arXiv 2021年
作者: Cotler, Jordan Huang, Hsin-Yuan McClean, Jarrod R. Black Hole Initiative CambridgeMA02138 United States Institute for Quantum Information and Matter Caltech PasadenaCA United States Department of Computing and Mathematical Sciences Caltech PasadenaCA United States Google Quantum AI 340 Main Street VeniceCA90291 United States
It has been shown that the apparent advantage of some quantum machine learning algorithms may be efficiently replicated using classical algorithms with suitable data access - a process known as dequantization. Existin... 详细信息
来源: 评论