咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4601-4610 订阅
排序:
Algorithmic insights on continual learning from fruit flies
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Yang Dasgupta, Sanjoy Navlakha, Saket Cold Spring Harbor Laboratory Simons Center for Quantitative Biology Cold Spring HarborNY United States Computer Science and Engineering Department University of California San Diego La Jolla CA United States
Continual learning in computational systems is challenging due to catastrophic forgetting. We discovered a two-layer neural circuit in the fruit fly olfactory system that addresses this challenge by uniquely combining... 详细信息
来源: 评论
Spatial assembly: Generative architecture with reinforcement learning, self play and tree search
arXiv
收藏 引用
arXiv 2021年
作者: Tigas, Panagiotis Hosmer, Tyson University of Oxford United Kingdom Bartlett School of Architecture UCL United Kingdom
With this work, we investigate the use of Reinforcement learning (RL) for generation of spatial assemblies, by combining ideas from Procedural Generation algorithms (Wave Function Collapse algorithm (WFC) [8]) and RL ... 详细信息
来源: 评论
Unifying distillation with personalization in federated learning
arXiv
收藏 引用
arXiv 2021年
作者: Divi, Siddharth Farrukh, Habiba Celik, Z. Berkay Purdue University West Lafayette United States
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data. In this setting, all clients... 详细信息
来源: 评论
Meta-learning amidst heterogeneity and ambiguity
arXiv
收藏 引用
arXiv 2021年
作者: Go, Kyeongryeol Yun, Seyoung Graduate School of AI KAIST Daejeon Korea Republic of
Meta-learning aims to learn a model that can handle multiple tasks generated from an unknown but shared distribution. However, typical meta-learning algorithms have assumed the tasks to be similar such that a single m... 详细信息
来源: 评论
An instance-dependent simulation framework for learning with label noise
arXiv
收藏 引用
arXiv 2021年
作者: Gu, Keren Masotto, Xander Bachani, Vandana Lakshminarayanan, Balaji Nikodem, Jack Yin, Dong DeepMind Google Research Brain Team
We propose a simulation framework for generating instance-dependent noisy labels via a pseudo-labeling paradigm. We show that the distribution of the synthetic noisy labels generated with our framework is closer to hu... 详细信息
来源: 评论
Deep learning for Instance Retrieval: A Survey
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Wei Liu, Yu Wang, Weiping Bakker, Erwin M. Georgiou, Theodoros Fieguth, Paul Liu, Li Lew, Michael S. Academy of Advanced Technology Research of Hunan Changsha China DUTRU International School of Information Science and Engineering Dalian University of Technology China Leiden Institute of Advanced Computer Science Leiden University Netherlands The Department of Systems Design Engineering University of Waterloo Canada Center for Machine Vision and Signal Analysis University of Oulu Finland
In recent years a vast amount of visual content has been generated and shared from many fields, such as social media platforms, medical imaging, and robotics. This abundance of content creation and sharing has introdu... 详细信息
来源: 评论
Meta-learning with an adaptive task scheduler
arXiv
收藏 引用
arXiv 2021年
作者: Yao, Huaxiu Wang, Yu Wei, Ying Zhao, Peilin Mahdavi, Mehrdad Lian, Defu Finn, Chelsea Stanford University University of Science and Technology Tencent AI Lab Pennsylvania State University City University of Hong Kong
To benefit the learning of a new task, meta-learning has been proposed to transfer a well-generalized meta-model learned from various meta-training tasks. Existing meta-learning algorithms randomly sample meta-trainin... 详细信息
来源: 评论
Human-robot collaboration and machine learning: a systematic review of recent research
arXiv
收藏 引用
arXiv 2021年
作者: Semeraro, Francesco Griffiths, Alexander Cangelosi, Angelo Cognitive Robotics Laboratory The University of Manchester Manchester United Kingdom Ltd. Warton Aerodrome Lancashire United Kingdom
Technological progress increasingly envisions the use of robots interacting with people in everyday life. Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot, duri... 详细信息
来源: 评论
AutoDrop: Training deep learning models with automatic learning rate drop
arXiv
收藏 引用
arXiv 2021年
作者: Teng, Yunfei Wang, Jing Choromanska, Anna
Modern deep learning (DL) architectures are trained using variants of the SGD algorithm that is run with a manually defined learning rate schedule, i.e., the learning rate is dropped at the pre-defined epochs, typical... 详细信息
来源: 评论
Systematic evaluation of causal discovery in visual model based reinforcement learning
arXiv
收藏 引用
arXiv 2021年
作者: Ke, Nan Rosemary Didolkar, Aniket Mittal, Sarthak Goyal, Anirudh Lajoie, Guillaume Bauer, Stefan Rezende, Danilo Bengio, Yoshua Mozer, Michael Pal, Christopher Mila Polytechnique Montréal Canada Deepmind Mila Polytechnique Montréal Canada Element AI Google AI Max Planck Institute for Intelligent Systems Germany CIFAR
Inducing causal relationships from observations is a classic problem in machine learning. Most work in causality starts from the premise that the causal variables themselves are observed. However, for AI agents such a... 详细信息
来源: 评论