咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4611-4620 订阅
排序:
How to decay your learning rate
arXiv
收藏 引用
arXiv 2021年
作者: Lewkowycz, Aitor Blueshift Alphabet United States
Complex learning rate schedules have become an integral part of deep learning. We find empirically that common fine-tuned schedules decay the learning rate after the weight norm bounces. This leads to the proposal of ... 详细信息
来源: 评论
A Hybrid Active-Passive Approach to Imbalanced Nonstationary Data Stream Classification
arXiv
收藏 引用
arXiv 2022年
作者: Malialis, Kleanthis Roveri, Manuel Alippi, Cesare Panayiotou, Christos G. Polycarpou, Marios M. KIOS Research Innovation Center of Excellence Cyprus Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milan Italy Università della Svizzera Italiana Lugano Switzerland
In real-world applications, the process generating the data might suffer from nonstationary effects (e.g., due to seasonality, faults affecting sensors or actuators, and changes in the users' behaviour). These cha... 详细信息
来源: 评论
Snn-Art: Spiking Neural Networks with Adaptive Resonance Theory
SSRN
收藏 引用
SSRN 2022年
作者: Dagher, Issam University of Balamand Department of Computer Engineering Lebanon
In this paper we present a novel training algorithm for the Spiking Neural Networks which we call SNN-ART. Typically to train SNN, supervised learning is being used. The error-based learning is based on reducing the t... 详细信息
来源: 评论
Strengthened teaching–learning-based optimization algorithm for numerical optimization tasks
Research Square
收藏 引用
Research Square 2021年
作者: Chen, Xuefen Ye, Chunming Zhang, Yang Zhao, Lingwei Guo, Jing Ma, Kun University of Shanghai for Science and Technology China
The teaching–learning-based optimization algorithm (TLBO) is an efficient optimizer. However, it has several shortcomings such as premature convergence and stagnation at local optima. In this paper, the strengthened ... 详细信息
来源: 评论
learning to sample from censored markov random fields
arXiv
收藏 引用
arXiv 2021年
作者: Moitra, Ankur Mossel, Elchanan Sandon, Colin Department of Mathematics Massachusetts Institute of Technology United States
We study learning Censor Markov Random Fields (abbreviated CMRFs). These are Markov Random Fields where some of the nodes are censored (not observed). We present an algorithm for learning high temperature CMRFs within... 详细信息
来源: 评论
An experience report on machine learning reproducibility: Guidance for practitioners and tensorflow model garden contributors
arXiv
收藏 引用
arXiv 2021年
作者: Banna, Vishnu Chinnakotla, Akhil Yan, Zhengxin Vegesana, Ani Vivek, Naveen Krishnappa, Kruthi Jiang, Wenxin Lu, Yung-Hsiang Thiruvathukal, George K. Davis, James C. Department of Electrical & Computer Engineering Purdue University Department of Computer Science Loyola University Chicago
Machine learning techniques are becoming a fundamental tool for scientific and engineering progress. These techniques are applied in contexts as diverse as astronomy and spam filtering. However, correctly applying the... 详细信息
来源: 评论
Decentralized Personalized Federated learning: Lower Bounds and Optimal Algorithm for All Personalization Modes
arXiv
收藏 引用
arXiv 2021年
作者: Sadiev, Abdurakhmon Borodich, Ekaterina Beznosikov, Aleksandr Dvinskikh, Darina Chezhegov, Saveliy Tappenden, Rachael Takáč, Martin Gasnikov, Alexander Moscow Institute of Physics and Technology Russia United Arab Emirates HSE University Russia Institute for Information Transmission Problems RAS Russia University of Canterbury New Zealand
This paper considers the problem of decentralized, personalized federated learning. For centralized personalized federated learning, a penalty that measures the deviation from the local model and its average, is often... 详细信息
来源: 评论
A Comprehensive Benchmark Suite for Intel SGX
arXiv
收藏 引用
arXiv 2022年
作者: Kumar, Sandeep Panda, Abhisek Sarangi, Smruti R. School of Information Technology IIT Delhi New Delhi India Department of Computer Science and Engineering IIT Delhi New Delhi India
Trusted execution environments (TEEs) such as Intel SGX facilitate the secure execution of an application on untrusted machines. Sadly, such environments suffer from serious limitations and performance overheads in te... 详细信息
来源: 评论
A Symmetric Loss Perspective of Reliable Machine learning
arXiv
收藏 引用
arXiv 2021年
作者: Charoenphakdee, Nontawat Lee, Jongyeong Sugiyama, Masashi The University of Tokyo RIKEN AIP Japan RIKEN AIP The University of Tokyo Japan
When minimizing the empirical risk in binary classification, it is a common practice to replace the zero-one loss with a surrogate loss to make the learning objective feasible to optimize. Examples of well-known surro... 详细信息
来源: 评论
CoDiM: learning with noisy labels via contrastive semi-supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Xin Liu, Zixuan Xiao, Kaiwen Shen, Tian Huang, Junzhou Yang, Wei Samaras, Dimitris Han, Xiao Stony Brook University United States University of Washington United States Tencent AI Lab. China
Labels are costly and sometimes unreliable. Noisy label learning, semi-supervised learning, and contrastive learning are three different strategies for designing learning processes requiring less annotation cost. Semi... 详细信息
来源: 评论