咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4621-4630 订阅
排序:
Distributionally Robust learning with Stable Adversarial Training
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Jiashuo Shen, Zheyan Cui, Peng Zhou, Linjun Kuang, Kun Li, Bo The Department of Computer Science and Technology Tsinghua University Beijing China The School of Economics and Management Tsinghua University Beijing China The College of Computer Science and Technology Zhejiang University Hangzhou China
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts due to the greedy adoption of all the correlations found in training data. There is an emerging literature on tac... 详细信息
来源: 评论
A Probabilistically Motivated learning Rate Adaptation for Stochastic Optimization
arXiv
收藏 引用
arXiv 2021年
作者: de Roos, Filip Jidling, Carl Wills, Adrian Schön, Thomas B. Hennig, Philipp Department of Computer Science University of Tübingen Germany Max Planck Institute for Intelligent Systems Tübingen Germany Department of Information Technology Uppsala University Sweden School of Engineering University of Newcastle Australia
Machine learning practitioners invest significant manual and computational resources in finding suitable learning rates for optimization algorithms. We provide a probabilistic motivation, in terms of Gaussian inferenc... 详细信息
来源: 评论
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine learning
arXiv
收藏 引用
arXiv 2021年
作者: Kwon, Yongchan Zou, James Department of Biomedical Data Science Stanford University United States
Data Shapley has recently been proposed as a principled framework to quantify the contribution of individual datum in machine learning. It can effectively identify helpful or harmful data points for a learning algorit... 详细信息
来源: 评论
A brief survey of associations between meta-learning and general AI
arXiv
收藏 引用
arXiv 2021年
作者: Peng, Huimin
This paper briefly reviews the history of meta-learning and describes its contribution to general AI. Meta-learning improves model generalization capacity and devises general algorithms applicable to both in-distribut... 详细信息
来源: 评论
Reproducibility Issues for BERT-based Evaluation Metrics
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Yanran Belouadi, Jonas Eger, Steffen Computer Science Department Technical University of Darmstadt Germany NLLG Faculty of Technology Bielefeld University Germany
Reproducibility is of utmost concern in machine learning and natural language processing (NLP). In the field of natural language generation (especially machine translation), the seminal paper of Post (2018) has pointe... 详细信息
来源: 评论
Optimal quantum reservoir computing for the NISQ era
arXiv
收藏 引用
arXiv 2022年
作者: Colomer, Laia Domingo Carlo, G. Borondo, F. Campus de Cantoblanco Nicolás Cabrera 13-15 Madrid28049 Spain Departamento de Química Universidad Autónoma de Madrid Cantoblanco Madrid28049 Spain Grupo de Sistemas Complejos Universidad Politécnica de Madrid Madrid28035 Spain Comisión Nacional de Energía Atómica CONICET Departamento de Física Av. del Libertador 8250 Buenos Aires1429 Argentina
Universal fault-tolerant quantum computers require millions of qubits with low error rates. Since this technology is years ahead, noisy intermediate-scale quantum (NISQ) computation is receiving tremendous interest. I... 详细信息
来源: 评论
Low-Regret Active learning
arXiv
收藏 引用
arXiv 2021年
作者: Baykal, Cenk Liebenwein, Lucas Gal, Oren Feldman, Dan Rus, Daniela MIT United States University of Haifa
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training (i.e., active learning). By formulating the active learning problem as the prediction with sleeping ... 详细信息
来源: 评论
Non-stationary reinforcement learning without prior knowledge: An optimal black-box approach
arXiv
收藏 引用
arXiv 2021年
作者: Wei, Chen-Yu Luo, Haipeng University of Southern California
We propose a black-box reduction that turns a certain reinforcement learning algorithm with optimal regret in a (near-)stationary environment into another algorithm with optimal dynamic regret in a non-stationary envi... 详细信息
来源: 评论
Understand and improve contrastive learning methods for visual representation: A review
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Ran Machine Learning program - ECE Georgia Tech
Traditional supervised learning methods are hitting a bottleneck [33] because of their dependency on expensive manually labeled data and their weaknesses such as limited generalization ability and vulnerability to adv... 详细信息
来源: 评论
learning the Hypotheses Space from Data through a U-Curve Algorithm
arXiv
收藏 引用
arXiv 2021年
作者: Marcondes, Diego Simonis, Adilson Barrera, Junior Institute of Mathematics and Statistics University of São Paulo São Paulo SP05508-090 Brazil
This paper proposes a data-driven systematic, consistent and non-exhaustive approach to Model Selection, that is an extension of the classical agnostic PAC learning model. In this approach, learning problems are model... 详细信息
来源: 评论