咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4631-4640 订阅
排序:
UNDERSTANDING GENERALIZATION VIA LEAVE-ONE-OUT CONDITIONAL MUTUAL INFORMATION
arXiv
收藏 引用
arXiv 2022年
作者: Haghifam, Mahdi Moran, Shay Roy, Daniel M. Dziugaite, Gintare Karolina University of Toronto Canada Vector Institute Canada Technion Google Research Canada Mila McGill Canada
We study the mutual information between (certain summaries of) the output of a learning algorithm and its n training data, conditional on a supersample of n + 1 i.i.d. data from which the training data is chosen at ra... 详细信息
来源: 评论
Automated learning rate scheduler for large-batch training
arXiv
收藏 引用
arXiv 2021年
作者: Kim, Chiheon Kim, Saehoon Kim, Jongmin Lee, Donghoon Kim, Sungwoong Kakao Brain Korea Republic of
Large-batch training has been essential in leveraging large-scale datasets and models in deep learning. While it is computationally beneficial to use large batch sizes, it often requires a specially designed learning ... 详细信息
来源: 评论
FedNL: Making Newton-Type Methods Applicable to Federated learning
arXiv
收藏 引用
arXiv 2021年
作者: Safaryan, Mher Islamov, Rustem Qian, Xun Richtárik, Peter King Abdullah University of Science and Technology Thuwal Saudi Arabia Thuwal Saudi Arabia Dolgoprudny Russia
Inspired by recent work of Islamov et al (2021), we propose a family of Federated Newton Learn (FedNL) methods, which we believe is a marked step in the direction of making second-order methods applicable to FL. In co... 详细信息
来源: 评论
Communication-Efficient Collaborative Best Arm Identification
arXiv
收藏 引用
arXiv 2022年
作者: Karpov, Nikolai Zhang, Qin Department of Computer Science Indiana University BloomingtonIN47405 United States
We investigate top-m arm identification, a basic problem in bandit theory, in a multi-agent learning model in which agents collaborate to learn an objective function. We are interested in designing collaborative learn... 详细信息
来源: 评论
Robust Empirical Risk Minimization with Tolerance
arXiv
收藏 引用
arXiv 2022年
作者: Bhattacharjee, Robi Hopkins, Max Kumar, Akash Yu, Hantao Chaudhuri, Kamalika UCSD United States Colombia
Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today’s tech-dominated world, and current theoretical techniques requiring exponential sample complexity and co... 详细信息
来源: 评论
On the cross-lingual transferability of multilingual prototypical models across NLU tasks
arXiv
收藏 引用
arXiv 2022年
作者: Cattan, Oralie Servan, Christophe Rosset, Sophie QWANT 61 rue de Villiers Neuilly-sur-Seine 92200 France Université Paris-Saclay CNRS LISN Orsay 91405 France
Supervised deep learning-based approaches have been applied to task-oriented dialog and have proven to be effective for limited domain and language applications when a sufficient number of training examples are availa... 详细信息
来源: 评论
Formation learning algorithms for mobile agents subject to 2-D dynamically changing topologies
Formation learning algorithms for mobile agents subject to 2...
收藏 引用
American Control Conference (ACC)
作者: Meng, Deyuan Jia, Yingmin Du, Junping Zhang, Jun Li, Wenling Beihang Univ BUAA Div Res 7 Beijing 100191 Peoples R China
In this paper, we consider a two-dimensional (2-D) formation problem for multi-agent systems subject to switching topologies that dynamically change along both a finite time axis and an infinite iteration axis. We pre... 详细信息
来源: 评论
Nevis’22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
arXiv
收藏 引用
arXiv 2022年
作者: Bornschein, Jörg Galashov, Alexandre Hemsley, Ross Rannen-Triki, Amal Chen, Yutian Chaudhry, Arslan He, Xu Owen Douillard, Arthur Caccia, Massimo Feng, Qixuan Shen, Jiajun Rebuffi, Sylvestre-Alvise Stacpoole, Kitty de las Casas, Diego Hawkins, Will Lazaridou, Angeliki Teh, Yee Whye Rusu, Andrei A. Pascanu, Razvan Ranzato, Marc Aurelio
A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ... 详细信息
来源: 评论
Adversarial targeted forgetting in regularization and generative based continual learning models
arXiv
收藏 引用
arXiv 2021年
作者: Umer, Muhammad Polikar, Robi Department of Electrical & Computer Engineering Rowan University Glassboro United States
Continual (or "incremental") learning approaches are employed when additional knowledge or tasks need to be learned from subsequent batches or from streaming data. However these approaches are typically adve... 详细信息
来源: 评论
Unified group fairness on federated learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Fengda Kuang, Kun Liu, Yuxuan Wu, Chao Wu, Fei Lu, Jiaxun Shao, Yunfeng Xiao, Jun College of Computer Science and Technology Zhejiang University School of Public Affairs Zhejiang University Huawei Noah’s Ark Lab
Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on the private data from distributed clients. However, most of existing FL algorithms cannot guarante... 详细信息
来源: 评论