咨询与建议

限定检索结果

文献类型

  • 8,588 篇 会议
  • 4,672 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,271 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,812 篇 工学
    • 11,987 篇 计算机科学与技术...
    • 9,566 篇 软件工程
    • 1,727 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,474 篇 控制科学与工程
    • 1,209 篇 电气工程
    • 593 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 341 篇 光学工程
    • 328 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 233 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 143 篇 交通运输工程
  • 5,705 篇 理学
    • 3,353 篇 数学
    • 1,902 篇 生物学
    • 1,298 篇 统计学(可授理学、...
    • 793 篇 物理学
    • 670 篇 系统科学
    • 244 篇 化学
  • 2,184 篇 管理学
    • 1,361 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 674 篇 医学
    • 522 篇 基础医学(可授医学...
    • 518 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 142 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,271 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 72 篇 machine learning
  • 59 篇 neural network
  • 50 篇 algorithms
  • 33 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 27 篇 classifiers
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 23 篇 university colle...
  • 23 篇 microsoft resear...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 21 篇 tsinghua univers...
  • 21 篇 princeton univer...
  • 21 篇 google research
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 19 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,707 篇 英文
  • 405 篇 其他
  • 102 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13271 条 记 录,以下是4641-4650 订阅
排序:
Defining The Best-Fit Machine learning Classifier Prediction Model For Diagnosis of Heart Disease
Research Square
收藏 引用
Research Square 2021年
作者: Roy, Debarati Dey De, Debashis B. P. Poddar Institute of Management & Technology India Maulana Abul Kalam Azad University of Technology India
Cardio vascular disease or alternatively heart disease is the primitive cause of death all around the world. Last few decades, it was observed that maximum death cases occurred due to heart failure. The heart failure ... 详细信息
来源: 评论
Constrained learning with Non-Convex Losses
arXiv
收藏 引用
arXiv 2021年
作者: Chamon, Luiz F.O. Paternain, Santiago Calvo-Fullana, Miguel Ribeiro, Alejandro The Simons Institute for the Theory of Computation University of California Berkeley United States The Department of Electrical Computer and Systems Engineering Rensselaer Polytechnic Institute United States The Department of Aeronautics and Astronautics Massachusetts Institute of Technology United States The Department of Electrical and Systems Engineering University of Pennsylvania United States
Though learning has become a core component of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced systems. The need to impose requirements on learning is ther... 详细信息
来源: 评论
A relaxed technical assumption for posterior sampling-based reinforcement learning for control of unknown linear systems
arXiv
收藏 引用
arXiv 2021年
作者: Gagrani, Mukul Sudhakara, Sagar Mahajan, Aditya Nayyar, Ashutosh Ouyang, Yi Qualcomm AI research San Diego United States The Department of Electrical and Computer Engineering University of Southern California Los AngelesCA United States The department of Electrical and Computer Engineering McGill University MontrealQC Canada Preferred Networks America BurlingameCA United States
We revisit the Thompson sampling-based learning algorithm for controlling an unknown linear system with quadratic cost proposed in [1]. This algorithm operates in episodes of dynamic length and it is shown to have a r... 详细信息
来源: 评论
Emerging Trends in Federated learning: From Model Fusion to Federated X learning
arXiv
收藏 引用
arXiv 2021年
作者: Ji, Shaoxiong Tan, Yue Saravirta, Teemu Yang, Zhiqin Liu, Yixin Vasankari, Lauri Pan, Shirui Long, Guodong Walid, Anwar University of Helsinki Finland University of Technology Sydney Australia Aalto University Finland Beihang University China Monash University Australia Griffith University Australia Amazon United States Columbia University United States
Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. As a flexible learning setting, federated learning has the potential t... 详细信息
来源: 评论
On the Benefits of Inducing Local Lipschitzness for Robust Generative Adversarial Imitation learning
arXiv
收藏 引用
arXiv 2021年
作者: Memarian, Farzan Hashemi, Abolfazl Niekum, Scott Topcu, Ufuk NVIDIA Corporation United States Purdue University United States The University of Massachusetts Amherst United States The University of Texas Austin United States
We explore methodologies to improve the robustness of generative adversarial imitation learning (GAIL) algorithms to observation noise. Towards this objective, we study the effect of local Lipschitzness of the discrim... 详细信息
来源: 评论
Winning the ICCV'2021 VALUE challenge: Task-aware ensemble and transfer learning with visual concepts
arXiv
收藏 引用
arXiv 2021年
作者: Shin, Minchul Mun, Jonghwan On, Kyoung-Woon Kang, Woo-Young Han, Gunsoo Kim, Eun-Sol Kakao Brain Hanyang University
The VALUE (Video-And-Language Understanding Evaluation) benchmark is newly introduced to evaluate and analyze multi-modal representation learning algorithms on three video-and-language tasks: Retrieval, QA, and Captio... 详细信息
来源: 评论
Distributional Shift Adaptation using Domain-Specific Features
arXiv
收藏 引用
arXiv 2022年
作者: Tahir, Anique Cheng, Lu Guo, Ruocheng Liu, Huan Arizona State University TempeAZ United States University of Illinois Chicago ChicagoIL United States Bytedance AI Lab London United Kingdom
Machine learning algorithms typically assume that the training and test samples come from the same distributions, i.e., in-distribution. However, in open-world scenarios, streaming big data can be Out-Of-Distribution ... 详细信息
来源: 评论
Improved Crow Search Algorithm for Optimal Flexible Process Planning
SSRN
收藏 引用
SSRN 2022年
作者: Avalos, Omar Haro, Eduardo H. Camarena, Octavio Díaz, Primitivo Departamento de Electrónica Universidad de Guadalajara CUCEI Av. Revolución 1500 Jal Guadalajara Mexico
The enhancement of manufacturing processes due to the growing demand for products and services is a problem that must be constantly updated to fulfill such requests. Under such circumstances, several schemas have been... 详细信息
来源: 评论
EDU-level Extractive Summarization with Varying Summary Lengths
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Yuping Tseng, Ching-Hsun Shang, Jiayu Mao, Shengzhong Nenadic, Goran Zeng, Xiao-Jun Department of Computer Science University of Manchester United Kingdom
Extractive models usually formulate text summarization as extracting fixed top-k salient sentences from the document as a summary. Few works exploited extracting finer-grained Elementary Discourse Unit (EDU) with litt... 详细信息
来源: 评论
FAIR GROUP-SHARED REPRESENTATIONS WITH NORMALIZING FLOWS
arXiv
收藏 引用
arXiv 2022年
作者: Cerrato, Mattia Köppel, Marius Segner, Alexander Kramer, Stefan Johannes Gutenberg-Universität Mainz Saarstraße 21 Mainz Germany
The issue of fairness in machine learning stems from the fact that historical data often displays biases against specific groups of people which have been underprivileged in the recent past, or still are. In this cont... 详细信息
来源: 评论