咨询与建议

限定检索结果

文献类型

  • 8,557 篇 会议
  • 4,638 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,206 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,748 篇 工学
    • 11,925 篇 计算机科学与技术...
    • 9,524 篇 软件工程
    • 1,726 篇 生物工程
    • 1,637 篇 信息与通信工程
    • 1,457 篇 控制科学与工程
    • 1,208 篇 电气工程
    • 591 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 340 篇 光学工程
    • 327 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 141 篇 土木工程
  • 5,687 篇 理学
    • 3,337 篇 数学
    • 1,902 篇 生物学
    • 1,289 篇 统计学(可授理学、...
    • 791 篇 物理学
    • 669 篇 系统科学
    • 243 篇 化学
  • 2,181 篇 管理学
    • 1,359 篇 图书情报与档案管...
    • 884 篇 管理科学与工程(可...
    • 440 篇 工商管理
  • 673 篇 医学
    • 522 篇 基础医学(可授医学...
    • 517 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 141 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,206 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 71 篇 machine learning
  • 59 篇 neural network
  • 49 篇 algorithms
  • 32 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 26 篇 classifiers
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 22 篇 google research
  • 21 篇 tsinghua univers...
  • 20 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 18 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,813 篇 英文
  • 236 篇 其他
  • 98 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=Learning algorithms"
13206 条 记 录,以下是4811-4820 订阅
排序:
Integration of machine learning algorithms in the computer-acoustic composition goldstream variations
Integration of machine learning algorithms in the computer-a...
收藏 引用
39th International Computer Music Conference, ICMC 2013
作者: Deal, Scott Sanchez, Javier Indiana University Purdue University Department of Music and Arts Technology Indianapolis United States
This paper presents an implementation of a musical interface that utilizes machine learning (ML) attributes in real-time performance. The objective behind the work is to empower performers with an expanded musical pal... 详细信息
来源: 评论
Relevance as a metric for evaluating machine learning algorithms
Relevance as a metric for evaluating machine learning algori...
收藏 引用
9th International Conference on International Conference on Machine learning and Data Mining, MLDM 2013
作者: Gopalakrishna, Aravind Kota Ozcelebi, Tanir Liotta, Antonio Lukkien, Johan J. Department of Mathematics and Computer Science Netherlands Electro-Optical Communications Department of Electrical Engineering Eindhoven University of Technology Netherlands
In machine learning, the choice of a learning algorithm that is suitable for the application domain is critical. The performance metric used to compare different algorithms must also reflect the concerns of users in t... 详细信息
来源: 评论
Constructing hard functions using learning algorithms
Constructing hard functions using learning algorithms
收藏 引用
2013 IEEE Conference on Computational Complexity, CCC 2013
作者: Klivans, Adam Kothari, Pravesh Oliveira, Igor C. UT Austin United States Columbia University United States
Fort now and Klivans proved the following relationship between efficient learning algorithms and circuit lower bounds: if a class of boolean circuits C contained in P/poly of Boolean is exactly learnable with membersh... 详细信息
来源: 评论
Stability of the Nash equilibrium under gradient ascent learning algorithms in two-agent two-action games
Stability of the Nash equilibrium under gradient ascent lear...
收藏 引用
2013 IEEE International Conference on Control Applications, CCA 2013
作者: Bhaya, Amit De Macedo, Rodrigo Brandolt Sodré Shigueoka, Lucas Shiguemitsu Department of Electrical Engineering Federal University of Rio de Janeiro Rio de Janeiro Brazil
This paper provides a unified view and stability analysis of reinforcement learning algorithms for general sum games that have been proposed in the literature. Specifically, the gradient ascent learning algorithms pro... 详细信息
来源: 评论
A deep learning framework for neuroscience
收藏 引用
NATURE NEUROSCIENCE 2019年 第11期22卷 1761-1770页
作者: Richards, Blake A. Lillicrap, Timothy P. Beaudoin, Philippe Bengio, Yoshua Bogacz, Rafal Christensen, Amelia Clopath, Claudia Costa, Rui Ponte de Berker, Archy Ganguli, Surya Gillon, Colleen J. Hafner, Danijar Kepecs, Adam Kriegeskorte, Nikolaus Latham, Peter Lindsay, Grace W. Miller, Kenneth D. Naud, Richard Pack, Christopher C. Poirazi, Panayiota Roelfsema, Pieter Sacramento, Joao Saxe, Andrew Scellier, Benjamin Schapiro, Anna C. Senn, Walter Wayne, Greg Yamins, Daniel Zenke, Friedemann Zylberberg, Joel Therien, Denis Kording, Konrad P. Mila Montreal PQ Canada McGill Univ Sch Comp Sci Montreal PQ Canada McGill Univ Dept Neurol & Neurosurg Montreal PQ Canada Canadian Inst Adv Res Toronto ON Canada DeepMind Inc London England UCL Ctr Computat Math & Phys Life Sci & Expt Biol London England Element AI Montreal PQ Canada Univ Montreal Montreal PQ Canada Univ Oxford MRC Brain Network Dynam Unit Oxford England Stanford Univ Dept Elect Engn Stanford CA 94305 USA Imperial Coll London Dept Bioengn London England Univ Bristol Sch Comp Sci Elect & Elect Engn Computat Neurosci Unit Bristol Avon England Univ Bristol Engn Maths Bristol Avon England Univ Bern Dept Physiol Bern Switzerland Stanford Univ Dept Appl Phys Stanford CA 94305 USA Google Brain Mountain View CA USA Univ Toronto Scarborough Dept Biol Sci Toronto ON Canada Univ Toronto Dept Cell & Syst Biol Toronto ON Canada Univ Toronto Dept Comp Sci Toronto ON Canada Vector Inst Toronto ON Canada Cold Spring Harbor Lab POB 100 Cold Spring Harbor NY 11724 USA Columbia Univ Dept Psychol & Neurosci New York NY USA Columbia Univ Zuckerman Mind Brain Behav Inst New York NY USA UCL Gatsby Computat Neurosci Unit London England Columbia Univ Ctr Theoret Neurosci New York NY USA Columbia Univ Coll Phys & Surg Dept Neurosci New York NY USA Univ Ottawa Brain & Mind Inst Ottawa ON Canada Univ Ottawa Dept Cellular & Mol Med Ottawa ON Canada Fdn Res & Technol Hellas FORTH IMBB Iraklion Greece Netherlands Inst Neurosci Dept Vis & Cognit Amsterdam Netherlands Swiss Fed Inst Technol Inst Neuroinformat Zurich Switzerland Univ Zurich Zurich Switzerland Univ Oxford Dept Expt Psychol Oxford England Univ Penn Dept Psychol 3815 Walnut St Philadelphia PA 19104 USA Stanford Univ Dept Psychol Stanford CA USA Stanford Univ Dept Comp Sci Stanford CA 94305 USA Stanford Univ Wu Tsai Neurosci Inst Stanford CA 94305 USA Friedrich Miescher Inst Biomed Res Basel Switzerland Univ Oxford Ctr Neural Circuits & Behav O
Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the t... 详细信息
来源: 评论
Thermodynamic non-ideality and disorder heterogeneity in actinide silicate solid solutions
NPJ MATERIALS DEGRADATION
收藏 引用
NPJ MATERIALS DEGRADATION 2021年 第1期5卷 1-14页
作者: Marcial, J. Zhang, Y. Zhao, X. Xu, H. Mesbah, A. Nienhuis, E. T. Szenknect, S. Neuefeind, J. C. Lin, J. Qi, L. Migdisov, A. A. Ewing, R. C. Dacheux, N. McCloy, J. S. Guo, X. Washington State Univ Sch Mech & Mat Engn Pullman WA 99164 USA Oak Ridge Natl Lab Neutron Scattering Div Oak Ridge TN USA NIST Mat Measurement Sci Div Gaithersburg MD 20899 USA Washington State Univ Dept Chem Pullman WA 99164 USA Washington State Univ Alexandra Navrotsky Inst Expt Thermodynam Pullman WA 99164 USA Washington State Univ Mat Sci & Engn Program Pullman WA 99164 USA Los Alamos Natl Lab Earth & Environm Sci Div Los Alamos NM USA Univ Montpellier ICSM CRNS CEAENSCMSite Marcoule Bagnols Sur Ceze France Chinese Acad Sci Shanghai Inst Appl Phys Shanghai Peoples R China Univ Michigan Dept Mat Sci & Engn Ann Arbor MI 48109 USA Stanford Univ Dept Geol Sci Stanford CA 94305 USA
Non-ideal thermodynamics of solid solutions can greatly impact materials degradation behavior. We have investigated an actinide silicate solid solution system (USiO4-ThSiO4), demonstrating that thermodynamic non-ideal... 详细信息
来源: 评论
Adaptive scale-invariant online algorithms for learning linear models
arXiv
收藏 引用
arXiv 2019年
作者: Kempka, Michal Kotlowski, Wojciech Warmuth, Manfred K. Poznan University of Technology Poznan Poland Google Inc. Zürich UC Santa Cruz
We consider online learning with linear models, where the algorithm predicts on sequentially revealed instances (feature vectors), and is compared against the best linear function (comparator) in hindsight. Popular al... 详细信息
来源: 评论
SLIDE: In defense of smart algorithms over hardware acceleration for large-scale deep learning systems
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Beidi Medini, Tharun Farwell, James Gobriel, Sameh Tai, Charlie Shrivastava, Anshumali Rice University Intel Corporation
Deep learning (DL) algorithms are the central focus of modern machine learning systems. As data volumes keep growing, it has become customary to train large neural networks with hundreds of millions of parameters to m... 详细信息
来源: 评论
Practical reinforcement learning - Experiences in lot scheduling application
收藏 引用
IFAC-PapersOnLine 2019年 第13期52卷 1415-1420页
作者: Rummukainen, Hannu Nurminen, Jukka K. VTT Technical Research Centre of Finland P.O. Box 1000 VTTFI-02044 Finland
With recent advances in deep reinforcement learning, it is time to take another look at reinforcement learning as an approach for discrete production control. We applied proximal policy optimization (PPO), a recently ... 详细信息
来源: 评论
ADES: A New Ensemble Diversity-Based Approach for Handling Concept Drift
收藏 引用
MOBILE INFORMATION SYSTEMS 2021年 第1期2021卷
作者: Museba, Tinofirei Nelwamondo, Fulufhelo Ouahada, Khmaies Univ Johannesburg Dept Appl Informat Syst Johannesburg South Africa Univ Johannesburg Dept Elect & Elect Engn Sci Johannesburg South Africa
Beyond applying machine learning predictive models to static tasks, a significant corpus of research exists that applies machine learning predictive models to streaming environments that incur concept drift. With the ... 详细信息
来源: 评论