咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 learning from ex...
  • 1 篇 ova detection
  • 1 篇 microscope image...

机构

  • 1 篇 oklahoma state u...
  • 1 篇 auburn universit...

作者

  • 1 篇 scimeca ruth
  • 1 篇 ramachandran udh...
  • 1 篇 trehan shubham
  • 1 篇 aakur sathyanara...

语言

  • 1 篇 其他
检索条件"主题词=Learning from Extremely Scarce Data"
1 条 记 录,以下是1-10 订阅
排序:
ProtoKD: learning from extremely scarce data for Parasite Ova Recognition  22
ProtoKD: Learning from Extremely Scarce Data for Parasite Ov...
收藏 引用
22nd IEEE International Conference on Machine learning and Applications, ICMLA 2023
作者: Trehan, Shubham Ramachandran, Udhav Scimeca, Ruth Aakur, Sathyanarayanan N. Auburn University Department of Computer Science and Software Engineering AuburnAL36849 United States Oklahoma State University Department of Veterinary Pathobiology StillwaterOK74078 United States
Developing reliable computational frameworks for early parasite detection, particularly at the ova (or egg) stage, is crucial for advancing healthcare and effectively managing potential public health crises. While dee... 详细信息
来源: 评论