咨询与建议

限定检索结果

文献类型

  • 3 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 工学
    • 4 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 2 篇 理学
    • 2 篇 数学

主题

  • 4 篇 learning from in...
  • 3 篇 dynamical system...
  • 3 篇 inductive logic ...
  • 1 篇 continuous logic...
  • 1 篇 neuro-symbolic m...
  • 1 篇 dynamical semant...
  • 1 篇 differentiable i...
  • 1 篇 multi-valued mod...
  • 1 篇 markov(k)
  • 1 篇 machine learning
  • 1 篇 boolean networks
  • 1 篇 delay
  • 1 篇 explainability

机构

  • 2 篇 natl inst inform...
  • 1 篇 peking univ peop...
  • 1 篇 natl inst inform...
  • 1 篇 univ rennes inri...
  • 1 篇 lab sci numer na...
  • 1 篇 pole emploi saum...
  • 1 篇 lab sci numer na...
  • 1 篇 max planck inst ...
  • 1 篇 univ rennes cnrs...
  • 1 篇 ecole cent nante...
  • 1 篇 guangzhou univ p...
  • 1 篇 wakayama univ wa...
  • 1 篇 ensam paristech ...
  • 1 篇 natl inst inform...
  • 1 篇 inst calcul inte...
  • 1 篇 sokendai chiyoda...

作者

  • 4 篇 inoue katsumi
  • 3 篇 ribeiro tony
  • 3 篇 magnin morgan
  • 2 篇 roux olivier
  • 2 篇 folschette maxim...
  • 1 篇 sakama chiaki
  • 1 篇 cao yongzhi
  • 1 篇 borzacchiello do...
  • 1 篇 tourret sophie
  • 1 篇 gao kun
  • 1 篇 chinesta francis...
  • 1 篇 wang hanpin

语言

  • 4 篇 英文
检索条件"主题词=Learning from interpretation transition"
4 条 记 录,以下是1-10 订阅
排序:
learning from interpretation transition using differentiable logic programming semantics
收藏 引用
MACHINE learning 2022年 第1期111卷 123-145页
作者: Gao, Kun Wang, Hanpin Cao, Yongzhi Inoue, Katsumi Peking Univ Beijing Peoples R China Guangzhou Univ Guangzhou Peoples R China Natl Inst Informat Tokyo Japan
The combination of learning and reasoning is an essential and challenging topic in neuro-symbolic research. Differentiable inductive logic programming is a technique for learning a symbolic knowledge representation fr... 详细信息
来源: 评论
learning Multi-Valued Biological Models with Delayed Influence from Time-Series Observations  14
Learning Multi-Valued Biological Models with Delayed Influen...
收藏 引用
IEEE 14th International Conference on Machine learning and Applications ICMLA
作者: Ribeiro, Tony Magnin, Morgan Inoue, Katsumi Sakama, Chiaki SOKENDAI Chiyoda Ku 2-1-2 Hitotsubashi Tokyo 1018430 Japan Ecole Cent Nantes Inst Rech Commun & Cybernet Nantes IRCCyN F-44321 Nantes France Natl Inst Informat Chiyoda Ku Tokyo 1018430 Japan Wakayama Univ Wakayama 6408510 Japan
Delayed effects are important in modeling biological systems, and timed Boolean networks have been proposed for such a framework. Yet it is not an easy task to design such Boolean models with delays precisely. Recentl... 详细信息
来源: 评论
learning Dynamics with Synchronous, Asynchronous and General Semantics  1
收藏 引用
28th International Conference on Inductive Logic Programming (ILP)
作者: Ribeiro, Tony Folschette, Maxime Magnin, Morgan Roux, Olivier Inoue, Katsumi Lab Sci Numer Nantes 1 Rue Noe Nantes France Pole Emploi Saumur France Univ Rennes INRIA CNRS IRISAIRSET Rennes France Natl Inst Informat Tokyo Japan
learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to synchr... 详细信息
来源: 评论
Inductive learning from State transitions over Continuous Domains  1
收藏 引用
27th International Conference on Inductive Logic Programming (ILP)
作者: Ribeiro, Tony Tourret, Sophie Folschette, Maxime Magnin, Morgan Borzacchiello, Domenico Chinesta, Francisco Roux, Olivier Inoue, Katsumi Lab Sci Numer Nantes LS2N 1 Rue Noe F-44321 Nantes France Max Planck Inst Informat Saarland Informat Campus D-66123 Saarbrucken Germany Univ Rennes CNRS Inria IRISAIRSET F-35000 Rennes France Natl Inst Informat Chiyoda Ku 2-1-2 Hitotsubashi Tokyo 1018430 Japan Inst Calcul Intensif 1 Rue Noe F-44321 Nantes France ENSAM ParisTech PIMM 151 Blvd Hop F-75013 Paris France
learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to discre... 详细信息
来源: 评论