咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 47 篇 工学
    • 46 篇 电气工程
    • 26 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 9 篇 控制科学与工程
    • 1 篇 计算机科学与技术...

主题

  • 47 篇 learning in ai
  • 33 篇 learning (artifi...
  • 27 篇 neural nets
  • 11 篇 neural computing...
  • 7 篇 pattern classifi...
  • 7 篇 pattern recognit...
  • 6 篇 control system a...
  • 6 篇 feedforward neur...
  • 6 篇 stability in con...
  • 6 篇 signal processin...
  • 5 篇 neurocontrol
  • 5 篇 simulation, mode...
  • 5 篇 recurrent neural...
  • 5 篇 backpropagation
  • 5 篇 interpolation an...
  • 5 篇 optimisation tec...
  • 4 篇 computer vision ...
  • 4 篇 markov processes
  • 4 篇 convergence
  • 4 篇 speech recogniti...

机构

  • 2 篇 nanyang technol ...
  • 2 篇 chung yuan chris...
  • 2 篇 city univ hong k...
  • 1 篇 polish acad sci ...
  • 1 篇 daimler chrysler...
  • 1 篇 univ crete dept ...
  • 1 篇 tsing hua univ i...
  • 1 篇 univ palmas gran...
  • 1 篇 psg coll technol...
  • 1 篇 natl lien ho ins...
  • 1 篇 univ perugia dep...
  • 1 篇 myong ji univ de...
  • 1 篇 univ southampton...
  • 1 篇 indian inst tech...
  • 1 篇 natl taiwan ocea...
  • 1 篇 pohang iron & st...
  • 1 篇 city univ hong k...
  • 1 篇 univ lecce dipar...
  • 1 篇 univ ancona dept...
  • 1 篇 ucl dept stat sc...

作者

  • 2 篇 leung cs
  • 2 篇 lin ch
  • 2 篇 chang sj
  • 2 篇 oh sk
  • 2 篇 saratchandran p
  • 2 篇 lin fj
  • 2 篇 wong kw
  • 2 篇 fiori s
  • 2 篇 sundararajan n
  • 1 篇 yasin smta
  • 1 篇 lee k
  • 1 篇 alonso ig
  • 1 篇 cho h. cheol
  • 1 篇 ngan hw
  • 1 篇 owens d. h.
  • 1 篇 garcia t
  • 1 篇 liu s.
  • 1 篇 white nm
  • 1 篇 kim hj
  • 1 篇 wu zh

语言

  • 30 篇 英文
  • 17 篇 其他
检索条件"主题词=Learning in AI"
47 条 记 录,以下是1-10 订阅
排序:
Intelligent learning control for a class of nonlinear dynamic systems
收藏 引用
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS 1999年 第2期146卷 165-170页
作者: Seo, WG Park, BH Lee, JS Pohang Univ Sci & Technol Dept Elect Engn Pohang 790784 South Korea Pohang Iron & Steel Co Tech Res Lab Instrumentat & Control Res Team Pohang South Korea
A controller is presented which guarantees system stability by using a feedback controller coupled with an intelligent compensator, and achieves precise tracking by using a set of iterative learning rules. In the feed... 详细信息
来源: 评论
Online unsupervised learning of hidden Markov models for adaptive speech recognition
收藏 引用
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING 2001年 第5期148卷 315-324页
作者: Chien, JT Natl Cheng Kung Univ Dept Comp Sci & Informat Engn Tainan 70101 Taiwan
A novel framework of an online unsupervised learning algorithm is presented to flexibly adapt the existing speaker-independent hidden Markov models (HMMs) to nonstationary environments induced by varying speakers, tra... 详细信息
来源: 评论
Reactive parking control of nonholonomic vehicles via a fuzzy learning automaton
收藏 引用
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS 2001年 第2期148卷 169-179页
作者: Rigatos, GG Tzafestas, SG Evangelidis, GJ Natl Tech Univ Athens Dept Elect & Comp Engn Intelligent Robot & Automat Lab GR-15773 Athens Greece
The paper presents an intelligent reactive controller, which is capable of performing automated parallel parking in a confined space slightly larger than the dimensions of the vehicle. This controller combines the fea... 详细信息
来源: 评论
Iterative learning control: quantifying the effect of output noise
收藏 引用
IET CONTROL THEORY AND APPLICATIONS 2011年 第2期5卷 379-388页
作者: Owens, D. H. Liu, S. Univ Sheffield Automat Control & Syst Engn Dept Sheffield S1 3JD S Yorkshire England
Fixed parameter iterative learning control (ILC) for linear-time invariant, single-input single-output systems subject to output noise is analysed with the intent of predicting the expectation of the underlying 'n... 详细信息
来源: 评论
Hybrid learning approach to blind deconvolution of linear MIMO systems
收藏 引用
ELECTRONICS LETTERS 1999年 第17期35卷 1429-1430页
作者: Choi, S Cichocki, A Chungbuk Natl Univ Dept Elect Engn Cheongju 361763 Chungbuk South Korea RIKEN Brain Sci Inst Lab Open Informat Syst Wako Saitama 35101 Japan
A hybrid network is presented which performs blind deconvolutions of linear MIMO systems. The hybrid network consists of a feedforward network followed by a feedback network, where each of the synapses is represented ... 详细信息
来源: 评论
learning object dynamics for smooth tracking of moving lip contours
收藏 引用
ELECTRONICS LETTERS 2000年 第6期36卷 520-521页
作者: Wark, T Sridharan, S Chandran, V Queensland Univ Technol Sch Elect & Elect Engn RCSAVT Speech REs Lab Brisbane Qld 4001 Australia
A new technique is proposed for learning the dynamic characteristics of a deformable object applied in particular to the problem of lip-tracking. Experimental results are given which demonstrate that the use of dynami... 详细信息
来源: 评论
learning algorithm for pattern classification using cellular neural networks
收藏 引用
ELECTRONICS LETTERS 2000年 第23期36卷 1941-1943页
作者: Grassi, G Di Sciascio, E Univ Lecce Dipartimento Ingn Innovazione I-73100 Lecce Italy Politecn Bari Dipartimento Elettrotecn & Elettron I-70125 Bari Italy
A new learning algorithm for pattern classification using cellular neural networks is described. The authors show that patterns belonging to the training set as well as patterns outside it can be classified reliably u... 详细信息
来源: 评论
Competitive neural network scheme for learning vector quantisation
收藏 引用
ELECTRONICS LETTERS 1999年 第9期35卷 725-726页
作者: Wang, JH Peng, CY Natl Taiwan Ocean Univ Dept Elect Engn Keelung Taiwan
A novel self-development neural network scheme, which employs two resource counters to record node activity, is presented. The proposed network not only harmonises equi-error and equiprobable criteria, but it also avo... 详细信息
来源: 评论
Optimal learning for patterns classification in RBF networks
收藏 引用
ELECTRONICS LETTERS 2002年 第20期38卷 1188-1190页
作者: Hoang, TA Nguyen, DT Univ Tasmania Sch Engn Hobart Tas 7001 Australia
The proposed modifying of the structure of the radial basis function (RBF) network by introducing the weight matrix to the input layer (in contrast to the direct connection of the input to the hidden layer of a conven... 详细信息
来源: 评论
'Mechanical' neural learning for blind source separation
收藏 引用
ELECTRONICS LETTERS 1999年 第22期35卷 1963-1964页
作者: Fiori, S Univ Perugia Dept Ind Engn I-06100 Perugia Italy Univ Ancona Dept Elect & Automat Ancona Italy
A class of learning models derived from the study of the dynamics of an abstract rigid mechanical system is presented. Application to blind source separation is illustrated through computer simulations.
来源: 评论