咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 信息与通信工程
    • 3 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
  • 1 篇 理学
    • 1 篇 数学

主题

  • 6 篇 learning to comm...
  • 4 篇 multi-agent rein...
  • 2 篇 reinforcement le...
  • 1 篇 error correction...
  • 1 篇 hierarchical str...
  • 1 篇 large-scale comm...
  • 1 篇 noise measuremen...
  • 1 篇 wireless communi...
  • 1 篇 joint source-cha...
  • 1 篇 graph neural net...
  • 1 篇 edge caching
  • 1 篇 modulation
  • 1 篇 semantics
  • 1 篇 protocols
  • 1 篇 mobile sensing
  • 1 篇 channel coding
  • 1 篇 reinforcement le...
  • 1 篇 multi-agent syst...
  • 1 篇 attentional deep...
  • 1 篇 heterogeneous ag...

机构

  • 1 篇 int inst informa...
  • 1 篇 shanghai jiao to...
  • 1 篇 ericsson res ban...
  • 1 篇 alberta machine ...
  • 1 篇 east china norma...
  • 1 篇 huawei canada ma...
  • 1 篇 univ alberta edm...
  • 1 篇 samsung elect re...
  • 1 篇 huawei technol c...
  • 1 篇 the chinese univ...
  • 1 篇 tongji universit...
  • 1 篇 imperial coll lo...
  • 1 篇 nanjing univ pos...
  • 1 篇 peking univ dept...
  • 1 篇 jd com peoples r...
  • 1 篇 nyu ny 10012 usa
  • 1 篇 banaras hindu un...
  • 1 篇 the chinese univ...
  • 1 篇 univ toronto dep...

作者

  • 1 篇 zhang zhengchao
  • 1 篇 jun wang
  • 1 篇 liu junliang
  • 1 篇 li baochun
  • 1 篇 mohalik swarup
  • 1 篇 tsung-hui chang
  • 1 篇 junchi yan
  • 1 篇 xiao fu
  • 1 篇 zeyl timothy
  • 1 篇 taylor matthew e...
  • 1 篇 gupta nikunj
  • 1 篇 xiangfeng wang
  • 1 篇 wenhao li
  • 1 篇 ni yan
  • 1 篇 gunduz deniz
  • 1 篇 emara salma
  • 1 篇 mao hangyu
  • 1 篇 kobus szymon
  • 1 篇 srinivasaraghava...
  • 1 篇 junjie sheng

语言

  • 6 篇 英文
检索条件"主题词=Learning to communicate"
6 条 记 录,以下是1-10 订阅
排序:
learning to communicate for Mobile Sensing with Multi-agent Reinforcement learning  16th
Learning to Communicate for Mobile Sensing with Multi-agent ...
收藏 引用
16th International Conference on Wireless Algorithms, Systems, and Applications (WASA)
作者: Zhang, Bolei Liu, Junliang Xiao, Fu Nanjing Univ Posts & Telecommun Sch Comp Nanjing Peoples R China JD Com Beijing Peoples R China
Mobile sensing has become a promising paradigm for monitoring the environmental state. When equipped with sensors, a group of unmanned vehicles can autonomously move around for distributed sensing. To maximize the sen... 详细信息
来源: 评论
HAMMER: Multi-level coordination of reinforcement learning agents via learned messaging
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2023年 1-16页
作者: Gupta, Nikunj Srinivasaraghavan, G. Mohalik, Swarup Kumar, Nishant Taylor, Matthew E. NYU New York NY 10012 USA Int Inst Informat Technol Bangalore Bangalore India Ericsson Res Bangalore India Banaras Hindu Univ Indian Inst Technol Varanasi India Univ Alberta Edmonton AB Canada Alberta Machine Intelligence Inst Amii Edmonton AB Canada
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches q... 详细信息
来源: 评论
Effective Communications: A Joint learning and Communication Framework for Multi-Agent Reinforcement learning Over Noisy Channels
收藏 引用
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2021年 第8期39卷 2590-2603页
作者: Tung, Tze-Yang Kobus, Szymon Roig, Joan Pujol Gunduz, Deniz Imperial Coll London Dept Elect & Elect Engn Informat Proc & Commun Lab IPC Lab London SW7 2AZ England Samsung Elect Res & Dev Inst UK Staines Upon Thames TW18 4QE England
We propose a novel formulation of the "effectiveness problem" in communications, put forth by Shannon and Weaver in their seminal work "The Mathematical Theory of Communication", by considering mul... 详细信息
来源: 评论
learning multi-agent communication with double attentional deep reinforcement learning
收藏 引用
AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS 2020年 第1期34卷 1-34页
作者: Mao, Hangyu Zhang, Zhengchao Xiao, Zhen Gong, Zhibo Ni, Yan Peking Univ Dept Comp Sci Beijing Peoples R China Huawei Technol Co Ltd Beijing Peoples R China
Communication is a critical factor for the big multi-agent world to stay organized and productive. Recently, Deep Reinforcement learning (DRL) has been adopted to learn the communication among multiple intelligent age... 详细信息
来源: 评论
Multi-Agent Deep Reinforcement learning for Cooperative Edge Caching via Hybrid Communication
Multi-Agent Deep Reinforcement Learning for Cooperative Edge...
收藏 引用
IEEE International Conference on Communications (IEEE ICC)
作者: Wang, Fei Emara, Salma Kaplan, Isidor Li, Baochun Zeyl, Timothy Univ Toronto Dept Elect Comp Engn Toronto ON Canada Huawei Canada Markham ON Canada
Though caching on edge servers is widely acknowledged to be essential, it is not trivial to cache content on edge servers adaptively without any prior knowledge of the distribution of content popularity across the use... 详细信息
来源: 评论
learning Structured Communication for Multi-Agent Reinforcement learning  23
Learning Structured Communication for Multi-Agent Reinforcem...
收藏 引用
Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems
作者: Junjie Sheng Xiangfeng Wang Bo Jin Wenhao Li Jun Wang Junchi Yan Tsung-Hui Chang Hongyuan Zha East China Normal University Shanghai China Tongji University Shanghai China The Chinese University of Hong Kong Shenzhen Shenzhen China Shanghai Jiao Tong University Shanghai China The Chinese University of Hong Kong Shenzhen & Shenzhen Institute of AI and Robotics for Society Shenzhen China
This paper investigates multi-agent reinforcement learning (MARL) communication mechanisms in large-scale scenarios. We propose a novel framework, learning Structured Communication (LSC), that leverages a flexible and... 详细信息
来源: 评论