咨询与建议

限定检索结果

文献类型

  • 241 篇 期刊文献
  • 156 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 399 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 378 篇 工学
    • 280 篇 计算机科学与技术...
    • 106 篇 电气工程
    • 44 篇 控制科学与工程
    • 35 篇 软件工程
    • 25 篇 信息与通信工程
    • 22 篇 机械工程
    • 14 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 10 篇 测绘科学与技术
    • 8 篇 电子科学与技术(可...
    • 5 篇 材料科学与工程(可...
    • 5 篇 交通运输工程
    • 5 篇 环境科学与工程(可...
    • 4 篇 航空宇航科学与技...
    • 4 篇 网络空间安全
    • 3 篇 水利工程
    • 3 篇 化学工程与技术
    • 3 篇 石油与天然气工程
  • 49 篇 理学
    • 18 篇 物理学
    • 12 篇 数学
    • 11 篇 生物学
    • 5 篇 化学
    • 5 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 大气科学
  • 48 篇 医学
    • 32 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 36 篇 管理学
    • 34 篇 管理科学与工程(可...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 农学
  • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 文学

主题

  • 399 篇 learning vector ...
  • 45 篇 classification
  • 32 篇 neural network
  • 22 篇 neural networks
  • 20 篇 pattern recognit...
  • 17 篇 artificial neura...
  • 17 篇 self-organizing ...
  • 15 篇 relevance learni...
  • 13 篇 machine learning
  • 12 篇 vector quantizat...
  • 11 篇 self-organizing ...
  • 10 篇 feature extracti...
  • 9 篇 support vector m...
  • 9 篇 artificial neura...
  • 8 篇 clustering
  • 8 篇 support vector m...
  • 8 篇 electronic nose
  • 7 篇 pattern classifi...
  • 7 篇 image segmentati...
  • 7 篇 competitive lear...

机构

  • 5 篇 kuwait univ dept...
  • 5 篇 univ groningen j...
  • 4 篇 univ chinese aca...
  • 4 篇 univ groningen j...
  • 4 篇 univ houston dep...
  • 3 篇 univ appl sci mi...
  • 3 篇 univ birmingham ...
  • 3 篇 univ groningen j...
  • 3 篇 univ leipzig cli...
  • 3 篇 univ groningen b...
  • 3 篇 univ leipzig cli...
  • 3 篇 fraunhofer inst ...
  • 2 篇 univ groningen p...
  • 2 篇 osaka inst techn...
  • 2 篇 univ bielefeld c...
  • 2 篇 univ paris 01 sa...
  • 2 篇 philips res heal...
  • 2 篇 univ appl sci mi...
  • 2 篇 cuny coll staten...
  • 2 篇 kyushu univ dept...

作者

  • 18 篇 biehl michael
  • 15 篇 villmann thomas
  • 13 篇 hammer barbara
  • 10 篇 bunte kerstin
  • 10 篇 villmann t.
  • 8 篇 chen ning
  • 8 篇 kaden marika
  • 7 篇 biehl m.
  • 6 篇 karayiannis nb
  • 6 篇 hammer b
  • 6 篇 hammer b.
  • 6 篇 kaden m.
  • 5 篇 tino peter
  • 5 篇 villmann t
  • 5 篇 omatu sigeru
  • 5 篇 schleif frank-mi...
  • 5 篇 bezdek jc
  • 4 篇 petkov nicolai
  • 4 篇 duarte joao
  • 4 篇 khuwaja ga

语言

  • 382 篇 英文
  • 14 篇 其他
  • 3 篇 中文
检索条件"主题词=Learning vector quantization"
399 条 记 录,以下是1-10 订阅
排序:
Hydrocephalus Classification From MRI Using learning vector quantization-Based Factorization Machine Deep learning
Hydrocephalus Classification From MRI Using Learning Vector ...
收藏 引用
3rd IEEE International Conference on Automation and Computation, AUTOCOM 2025
作者: Uma, P. Perumal, S. School of Computing Sciences Vels Institute of Science Technology and Advanced Studies (VISTAS) Tamil Nadu Chennai India
Background: The brain collecting cerebrospinal fluid defines the neurological condition known as hydrocephalus. Appropriate diagnosis of the condition for the patients determines how well hydrocephalus is treated. Alt... 详细信息
来源: 评论
learning vector quantization as an interpretable classifier for the detection of SARS-CoV-2 types based on their RNA sequences
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第1期34卷 67-78页
作者: Kaden, Marika Bohnsack, Katrin Sophie Weber, Mirko Kudla, Mateusz Gutowska, Kaja Blazewicz, Jacek Villmann, Thomas Univ Appl Sci Mittweida Technikumpl 17 D-09648 Mittweida Germany Saxon Inst Computat Intelligence & Machine Learni Technikumpl 17 D-09648 Mittweida Germany Poznan Univ Tech Inst Comp Sci Piotrowo 2 PL-60965 Poznan Poland Polish Acad Sci Inst Bioorgan Chem Noskowskiego 12-14 PL-61704 Poznan Poland European Ctr Bioinformat & Genom Piotrowo 2 PL-60965 Poznan Poland
We present an approach to discriminate SARS-CoV-2 virus types based on their RNA sequence descriptions avoiding a sequence alignment. For that purpose, sequences are preprocessed by feature extraction and the resultin... 详细信息
来源: 评论
learning vector quantization neural network for surface water extraction from Landsat OLI images
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2020年 第3期14卷
作者: Somasundaram, Deepakrishna Zhang, Fangfang Wang, Shenglei Ye, Huping Zhang, Zongke Zhang, Bing Chinese Acad Sci Inst Remote Sensing & Digital Earth Key Lab Digital Earth Sci Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Peking Univ Inst Remote Sensing & Geog Informat Syst Beijing Peoples R China Chinese Acad Sci Inst Geog Sci & Nat Resources Res State Key Lab Resources & Environm Informat Syst Beijing Peoples R China Chinese Acad Sci China Sri Lanka Joint Res & Demonstrat Ctr Water Beijing Peoples R China Chinese Acad Sci China Sri Lanka Joint Ctr Educ & Res Guangzhou Peoples R China
There is a growing concern over surface water dynamics due to an increased understanding of water availability and management with current climate trends. Remote sensing has now become an effective means of water extr... 详细信息
来源: 评论
learning vector quantization and relevances in complex coefficient space
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2020年 第24期32卷 18085-18099页
作者: Straat, M. Kaden, M. Gay, M. Villmann, T. Lampe, A. Seiffert, U. Biehl, M. Melchert, F. Univ Groningen POB 407 NL-9700 AK Groningen Netherlands Univ Appl Sci Mittweida Computat Intelligence Grp Tech Pl 17 D-09648 Mittweida Germany Fraunhofer Inst Factory Operat & Automat Sandtorstr 22 D-39106 Magdeburg Germany Fraunhofer Inst Transportat & Infrastruct Syst IV Zeunerstr 38 D-01069 Dresden Germany
In this contribution, we consider the classification of time series and similar functional data which can be represented in complex Fourier and wavelet coefficient space. We apply versions of learning vector quantizat... 详细信息
来源: 评论
learning vector quantization: The dynamics of winner-takes-all algorithms
收藏 引用
NEUROCOMPUTING 2006年 第7-9期69卷 660-670页
作者: Biehl, M Ghosh, A Hammer, B Univ Groningen NL-9700 AV Groningen Netherlands Tech Univ Clausthal Inst Comp Sci D-98678 Clausthal Zellerfeld Germany
Winner-Takes-All (WTA) prescriptions for learning vector quantization (LVQ) are studied in the framework of a model situation: two competing prototype vectors are updated according to a sequence of example data drawn ... 详细信息
来源: 评论
learning vector quantization for variable ordering in constraint satisfaction problems
收藏 引用
PATTERN RECOGNITION LETTERS 2013年 第4期34卷 423-432页
作者: Carlos Ortiz-Bayliss, Jose Terashima-Marin, Hugo Enrique Conant-Pablos, Santiago Tecnol Monterrey Monterrey 64849 Mexico
A constraint satisfaction problem (CSP) is a generic problem with many applications in different areas of artificial intelligence and operational research. During the search for a solution, the order in which the vari... 详细信息
来源: 评论
learning vector quantization with training count (LVQTC)
收藏 引用
NEURAL NETWORKS 1997年 第6期10卷 1083-1088页
作者: Odorico, R UNIV BOLOGNA IST NAZL FIS NUCLI-40126 BOLOGNAITALY
Kohonen's learning vector quantization (LVQ) is modified by attributing training counters to each neuron, which record its training statistics. During training, this allows for dynamic self-allocation of the neuro... 详细信息
来源: 评论
learning vector quantization for (dis-)similarities
收藏 引用
NEUROCOMPUTING 2014年 131卷 43-51页
作者: Hammer, Barbara Hofmann, Daniela Schleif, Frank-Michael Zhu, Xibin Univ Bielefeld CITEC Ctr Excellence Bielefeld Germany
Prototype-based methods often display very intuitive classification and learning rules. However, popular prototype based classifiers such as learning vector quantization (LVQ) are restricted to vectorial data only. In... 详细信息
来源: 评论
learning vector quantization classifiers for ROC-optimization
收藏 引用
COMPUTATIONAL STATISTICS 2018年 第3期33卷 1173-1194页
作者: Villmann, T. Kaden, M. Hermann, W. Biehl, M. Univ Appl Sci Mittweida Computat Intelligence Grp Mittweida Germany Paracelsus Klinikum Zwickau Abt Neurol Zwickau Germany Univ Groningen Johann Bernoulli Inst Math & Comp Sci Groningen Netherlands
This paper proposes a variant of the generalized learning vector quantizer (GLVQ) optimizing explicitly the area under the receiver operating characteristics (ROC) curve for binary classification problems instead of t... 详细信息
来源: 评论
learning vector quantization-Based Fuzzy Rules Oversampling Method
收藏 引用
Computers, Materials & Continua 2024年 第6期79卷 5067-5082页
作者: Jiqiang Chen Ranran Han Dongqing Zhang Litao Ma School of Mathematics and Physics Hebei University of EngineeringHandan056038China
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... 详细信息
来源: 评论