咨询与建议

限定检索结果

文献类型

  • 231 篇 期刊文献
  • 155 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 388 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 367 篇 工学
    • 273 篇 计算机科学与技术...
    • 101 篇 电气工程
    • 43 篇 控制科学与工程
    • 34 篇 软件工程
    • 22 篇 机械工程
    • 22 篇 信息与通信工程
    • 14 篇 仪器科学与技术
    • 13 篇 生物医学工程(可授...
    • 10 篇 测绘科学与技术
    • 9 篇 电子科学与技术(可...
    • 5 篇 交通运输工程
    • 5 篇 环境科学与工程(可...
    • 4 篇 材料科学与工程(可...
    • 4 篇 航空宇航科学与技...
    • 4 篇 网络空间安全
    • 3 篇 水利工程
    • 3 篇 化学工程与技术
    • 3 篇 石油与天然气工程
    • 3 篇 食品科学与工程(可...
  • 46 篇 理学
    • 18 篇 物理学
    • 11 篇 数学
    • 9 篇 生物学
    • 5 篇 化学
    • 5 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 大气科学
  • 46 篇 医学
    • 32 篇 临床医学
    • 25 篇 基础医学(可授医学...
  • 34 篇 管理学
    • 32 篇 管理科学与工程(可...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 农学

主题

  • 388 篇 learning vector ...
  • 43 篇 classification
  • 29 篇 neural network
  • 21 篇 neural networks
  • 19 篇 pattern recognit...
  • 17 篇 artificial neura...
  • 17 篇 self-organizing ...
  • 15 篇 relevance learni...
  • 13 篇 machine learning
  • 11 篇 self-organizing ...
  • 10 篇 feature extracti...
  • 9 篇 support vector m...
  • 9 篇 support vector m...
  • 9 篇 vector quantizat...
  • 9 篇 artificial neura...
  • 8 篇 clustering
  • 8 篇 electronic nose
  • 7 篇 pattern classifi...
  • 7 篇 radial basis fun...
  • 7 篇 image segmentati...

机构

  • 5 篇 kuwait univ dept...
  • 5 篇 univ groningen j...
  • 4 篇 univ chinese aca...
  • 4 篇 univ groningen j...
  • 4 篇 univ houston dep...
  • 3 篇 univ appl sci mi...
  • 3 篇 univ groningen j...
  • 3 篇 univ leipzig cli...
  • 3 篇 univ groningen b...
  • 3 篇 univ leipzig cli...
  • 3 篇 fraunhofer inst ...
  • 2 篇 univ groningen p...
  • 2 篇 osaka inst techn...
  • 2 篇 univ bielefeld c...
  • 2 篇 univ paris 01 sa...
  • 2 篇 philips res heal...
  • 2 篇 univ appl sci mi...
  • 2 篇 cuny coll staten...
  • 2 篇 kyushu univ dept...
  • 2 篇 helsinki univ te...

作者

  • 18 篇 biehl michael
  • 15 篇 villmann thomas
  • 13 篇 hammer barbara
  • 10 篇 bunte kerstin
  • 10 篇 villmann t.
  • 8 篇 chen ning
  • 8 篇 kaden marika
  • 7 篇 biehl m.
  • 6 篇 karayiannis nb
  • 6 篇 hammer b
  • 6 篇 hammer b.
  • 6 篇 kaden m.
  • 5 篇 villmann t
  • 5 篇 omatu sigeru
  • 5 篇 schleif frank-mi...
  • 5 篇 bezdek jc
  • 4 篇 petkov nicolai
  • 4 篇 duarte joao
  • 4 篇 khuwaja ga
  • 4 篇 kohonen t

语言

  • 373 篇 英文
  • 12 篇 其他
  • 3 篇 中文
检索条件"主题词=Learning vector quantization"
388 条 记 录,以下是101-110 订阅
排序:
Brain Imaging Classification Based On learning vector quantization
Brain Imaging Classification Based On Learning Vector Quanti...
收藏 引用
1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA)
作者: Nayef, Baher H. Hussain, Rizuana Iqbal Sahran, Shahnorbanun Abdullah, Siti Norul Huda Sheikh Univ Kebangsaan Malaysia FTSM Ctr Artificial Intelligence Technol Pattern Recognit Res Grp Bangi 43600 Selangor Malaysia Univ Kebangsaan Malaysia UKM Med Ctr Dept Radiol Kuala Lumpur 56000 Malaysia
The performance accuracy of the Artificial Neural Network (ANN) is highly dependent on the class distribution. Data multi-randomization before classification is proposed in this paper in order to obtain a proper class... 详细信息
来源: 评论
A BATCH learning vector quantization ALGORITHM FOR CATEGORICAL DATA
A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORIC...
收藏 引用
1st International Conference on Agents and Artificial Intelligence
作者: Chen, Ning Marques, Nuno C. Inst Politecn Porto Inst Super Engn Porto GECAD Rua Dr Antonio Bernardino Almeida 431 P-4200072 Oporto Portugal FCT UNL CENTRIA Departamento Informat Almada Portugal
learning vector quantization (LVQ) is a supervised learning algorithm for data classification. Since LVQ is based on prototype vectors, it is a neural network approach particularly applicable in non-linear separation ... 详细信息
来源: 评论
The Classification of Fetus Gender on Ultrasound Images Using learning vector quantization (LVQ)
The Classification of Fetus Gender on Ultrasound Images Usin...
收藏 引用
2014 Makassar International Conference on Electrical Engineering and Informatics (MICEEI)
作者: Maysanjaya, I. Md Dendi Nugroho, Hanung Adi Setiawan, Noor Akhmad Univ Gadjah Mada Fac Engn Dept Elect Engn & Informat Technol Jl Grafika 2Kampus UGM Yogyakarta 55281 Indonesia
One example of the implementations of digital image processing in biomedical field is to identify the gender of the fetus on the ultrasound image. To identify the gender of the fetus, a fetal must attain the age of at... 详细信息
来源: 评论
Extending learning vector quantization for Classifying Data with Categorical Values
Extending Learning Vector Quantization for Classifying Data ...
收藏 引用
1st International Conference on Agents and Artificial Intelligence
作者: Chen, Ning Marques, Nuno C. Inst Politecn Porto GECAD Inst Super Engn Porto Rua Dr Antonio Bernardino de Almeida 431 P-4200072 Oporto Portugal Univ Nova Lisboa Fac Ciencias & Tecnol CENTRIA Dept Informat P-2829 Lisbon Portugal
learning vector quantization (LVQ) is a supervised neural network method applicable in non-linear separation problems and widely used for data classification. Existing LVQ algorithms are mostly focused on numerical da... 详细信息
来源: 评论
Training a learning vector quantization network for biomedical classification
Training a Learning Vector Quantization network for biomedic...
收藏 引用
International Joint Conference on Neural Networks (IJCNN 01)
作者: Anagnostopoulos, C Anagnostopoulos, J Vergados, DD Kayafas, E Loumos, V Theodoropoulos, G Natl Tech Univ Athens Dept Elect & Comp Engn GR-15773 Athens Greece
A competitive learning vector quantization (LVQ) Artificial Neural Network (ANN) was trained to identify third stage parasitic strongyle larvae from domestic animals on the basis of quantitative data obtained from pro... 详细信息
来源: 评论
A study on Visual Abstraction for Reinforcement learning Problem Using learning vector quantization
A study on Visual Abstraction for Reinforcement Learning Pro...
收藏 引用
SICE Annual Conference
作者: Faudzi, Ahmad Afif Mohd Takano, Hirotaka Murata, Junichi Kyushu Univ Dept Elect & Elect Engn Fukuoka 812 Japan Univ Malaysia Pahang Dept Elect & Elect Engn Gambang Malaysia Kyushu Univ Dept Elect Engn Fukuoka 812 Japan
When applying the learning systems to real-world problems, which have a lot of unknown or uncertain things, there are some issues that need to be solved. One of them is the abstraction ability. In reinforcement learni... 详细信息
来源: 评论
learning vector quantization and Permutation Entropy to Analyse Epileptic Electroencephalography
Learning Vector Quantization and Permutation Entropy to Anal...
收藏 引用
International Joint Conference on Neural Networks
作者: Nadia Mammone Troels Wesenberg Kjr Jonas Duun-Henriksen Maurizio Campolo Fabio La Foresta Francesco C. Morabito IRCCS Centro Neurolesi Bonino-Pulejo Via Palermo c/da Casazza SS. 113 98124 Messina Italy Neurophysiology Center Department of Neurology Roskilde University Hospital Koegevej 7-13 DK-4000 Roskilde Denmark HypoSafe A/S Diplomvej 381 2800 Kgs. Lyngby Denmark DICEAM Department Mediterranean University of Reggio Calabria Via Graziella Feo di Vito 89060 Reggio Calabria Italy
In this paper, we address the issue of dealing with huge amounts of data from recordings of an Electroencephalogram (EEG) in epileptic patients. In particular, the attention is focused on the development of tools to s... 详细信息
来源: 评论
Analysis of Robust Soft learning vector quantization and an application to Facial Expression Recognition — Extended Abstract —
Analysis of Robust Soft Learning Vector Quantization and an ...
收藏 引用
Similarity-Based learning on Structures 2009
作者: de Vries, Gert-Jan Biehl, Michael Philips Research Europe User Experiences High Tech Campus 34 EindhovenNL-5656 AE Netherlands University of Groningen Inst. of Mathematics and Computing Science P.O. Box 407 Groningen9700 AK Netherlands
来源: 评论
Semantic classification of rural and urban images using learning vector quantization
Semantic classification of rural and urban images using lear...
收藏 引用
作者: Prakash Thulasiraman Louisiana State University
学位级别:硕士
One of the major hurdles in semantic image classification is that only low-level features can be reliably extracted from images as opposed to higher level features (objects present in the scene and their inter-relatio... 详细信息
来源: 评论
Nearest neighbor and learning vector quantization classification for damage detection using time series analysis
收藏 引用
STRUCTURAL CONTROL & HEALTH MONITORING 2010年 第6期17卷 614-631页
作者: de Lautour, Oliver R. Omenzetter, Piotr Univ Auckland Dept Civil & Environm Engn Auckland 1142 New Zealand
The application of time series analysis methods to structural health monitoring (SHM) is a relatively new but promising approach. This study focuses on the use of statistical pattern recognition techniques to classify... 详细信息
来源: 评论