咨询与建议

限定检索结果

文献类型

  • 5 篇 会议
  • 4 篇 期刊文献

馆藏范围

  • 9 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 9 篇 计算机科学与技术...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 9 篇 learning with co...
  • 2 篇 semi-supervised ...
  • 1 篇 fuzzy logic
  • 1 篇 deep learning
  • 1 篇 constructive mac...
  • 1 篇 neural networks
  • 1 篇 multi-view objec...
  • 1 篇 structured-outpu...
  • 1 篇 bayesian learnin...
  • 1 篇 neurosymbolic ai
  • 1 篇 kernel machines
  • 1 篇 global loss
  • 1 篇 metacognitive ai
  • 1 篇 fol
  • 1 篇 neuro-symbolic l...
  • 1 篇 hierarchical mul...
  • 1 篇 bayesian network...
  • 1 篇 neural-symbolic ...
  • 1 篇 satisfiability m...
  • 1 篇 optimization mod...

机构

  • 1 篇 univ salerno dmi...
  • 1 篇 ist nazl fis nuc...
  • 1 篇 univ naples fede...
  • 1 篇 univ calif irvin...
  • 1 篇 fdn bruno kessle...
  • 1 篇 arizona state un...
  • 1 篇 univ calif los a...
  • 1 篇 univ siena dipar...
  • 1 篇 infm unita saler...
  • 1 篇 univ calif los a...
  • 1 篇 univ utah salt l...
  • 1 篇 vrije univ amste...
  • 1 篇 michigan state u...
  • 1 篇 univ trento disi...
  • 1 篇 university at al...
  • 1 篇 sichuan univ peo...
  • 1 篇 univ naples fede...
  • 1 篇 univ siena dept ...
  • 1 篇 civ ai lab
  • 1 篇 univ naples fede...

作者

  • 1 篇 papini tiziano
  • 1 篇 qi wenting
  • 1 篇 sacca claudio
  • 1 篇 ton thy
  • 1 篇 tagliaferri r
  • 1 篇 maggini marco
  • 1 篇 guo quan
  • 1 篇 eleuteri a
  • 1 篇 srikumar vivek
  • 1 篇 singh sameer
  • 1 篇 sebastiani rober...
  • 1 篇 darwiche adnan
  • 1 篇 li tao
  • 1 篇 teso stefano
  • 1 篇 chang kai-wei
  • 1 篇 van den broeck g...
  • 1 篇 van krieken emil...
  • 1 篇 acar erman
  • 1 篇 choi arthur
  • 1 篇 de laurentiis m

语言

  • 9 篇 英文
检索条件"主题词=Learning with Constraints"
9 条 记 录,以下是1-10 订阅
排序:
Pylon: A PyTorch Framework for learning with constraints  35
Pylon: A PyTorch Framework for Learning with Constraints
收藏 引用
35th Annual Conference on Neural Information Processing Systems (NeurIPS)
作者: Ahmed, Kareem Li, Tao Ton, Thy Guo, Quan Chang, Kai-Wei Kordjamshidi, Parisa Srikumar, Vivek Van den Broeck, Guy Singh, Sameer Univ Calif Los Angeles Los Angeles CA 90024 USA Univ Utah Salt Lake City UT USA Univ Calif Irvine Irvine CA USA Sichuan Univ Chengdu Peoples R China Michigan State Univ E Lansing MI USA
Deep learning excels at learning low-level task information from large amounts of data, but struggles with learning high-level domain knowledge, which can often be directly and succinctly expressed. In this work, we i... 详细信息
来源: 评论
Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge  24
Error Detection and Constraint Recovery in Hierarchical Mult...
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Kricheli, Joshua Shay Vo, Khoa Datta, Aniruddha Ozgur, Spencer Shakarian, Paulo Arizona State Univ Tempe AZ 85287 USA
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during trai... 详细信息
来源: 评论
Hybrid Loss for Hierarchical Multi-label Classification Network
Hybrid Loss for Hierarchical Multi-label Classification Netw...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: Qi, Wenting Chelmis, Charalampos University at Albany Suny Department of Computer Science AlbanyNew York United States
Machine learning models for hierarchical multilabel classification (HMC) typically achieve low accuracy. This is because such models need not only predict multiple labels for each data instance, but also ensure that p... 详细信息
来源: 评论
Analyzing Differentiable Fuzzy Logic Operators
收藏 引用
ARTIFICIAL INTELLIGENCE 2022年 302卷 103602-103602页
作者: van Krieken, Emile Acar, Erman van Harmelen, Frank Vrije Univ Amsterdam Amsterdam Netherlands Civ AI Lab Amsterdam Netherlands
The AI community is increasingly putting its attention towards combining symbolic and neural approaches, as it is often argued that the strengths and weaknesses of these approaches are complementary. One recent trend ... 详细信息
来源: 评论
learning Bayesian network parameters under equivalence constraints
收藏 引用
ARTIFICIAL INTELLIGENCE 2017年 244卷 239-257页
作者: Yao, Tiansheng Choi, Arthur Darwiche, Adnan Univ Calif Los Angeles Dept Comp Sci Los Angeles CA 90095 USA
We propose a principled approach for learning parameters in Bayesian networks from incomplete datasets, where the examples of a dataset are subject to equivalence constraints. These equivalence constraints arise from ... 详细信息
来源: 评论
Structured learning modulo theories
收藏 引用
ARTIFICIAL INTELLIGENCE 2017年 244卷 166-187页
作者: Teso, Stefano Sebastiani, Roberto Passerini, Andrea Fdn Bruno Kessler DKM Data & Knowledge Management Unit Via Sommarive 18 I-138123 Povo TN Italy Univ Trento DISI Via Sommarive 5 I-38123 Povo TN Italy
Modeling problems containing a mixture of Boolean and numerical variables is a long-standing interest of Artificial Intelligence. However, performing inference and learning in hybrid domains is a particularly daunting... 详细信息
来源: 评论
Semantic-based regularization for learning and inference
收藏 引用
ARTIFICIAL INTELLIGENCE 2017年 244卷 143-165页
作者: Diligenti, Michelangelo Gori, Marco Sacca, Claudio Univ Siena Dept Informat Engn & Math Via Roma 56 Siena Italy
This paper proposes a unified approach to learning from constraints, which integrates the ability of classical machine learning techniques to learn from continuous feature-based representations with the ability of rea... 详细信息
来源: 评论
Multitask Semi-supervised learning with constraints and Constraint Exceptions
Multitask Semi-supervised Learning with Constraints and Cons...
收藏 引用
20th International Conference on Artificial Neural Networks
作者: Maggini, Marco Papini, Tiziano Univ Siena Dipartimento Ingn Informaz I-53100 Siena Italy
Many applications require to jointly learn a set of related functions for which some a priori mutual constraints are known. In particular, we consider a multitask learning problem in which a set of constraints among t... 详细信息
来源: 评论
Bayesian learning techniques: Application to neural networks with constraints on weight space  1
收藏 引用
13th Italian Workshop on Neural Nets (WIRN VIETRI 2002)
作者: Eleuteri, A Tagliaferri, R Milano, L Acernese, F De Laurentiis, M Univ Naples Federico II Dipartimento Matemat & Applicaz R Caccioppoli I-80126 Naples Italy Ist Nazl Fis Nucl Sez Napoli I-80126 Naples Italy Univ Salerno DMI I-84081 Baronissi SA Italy INFM Unita Salerno Salerno Italy Univ Naples Federico II Dipartimento Sci Fis I-80126 Naples Italy Univ Naples Federico II Dipartimento Endocrinol & Oncol Mol & Clin I-80126 Naples Italy
In this paper the fundamentals of Bayesian learning techniques are shown, and their application to neural network modeling is illustrated. Furthermore, it is shown how constraints on weight space can easily be embedde... 详细信息
来源: 评论