咨询与建议

限定检索结果

文献类型

  • 103 篇 期刊文献
  • 48 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 156 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 135 篇 工学
    • 89 篇 控制科学与工程
    • 57 篇 电气工程
    • 46 篇 计算机科学与技术...
    • 9 篇 机械工程
    • 6 篇 航空宇航科学与技...
    • 5 篇 信息与通信工程
    • 5 篇 土木工程
    • 5 篇 石油与天然气工程
    • 5 篇 交通运输工程
    • 3 篇 船舶与海洋工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 环境科学与工程(可...
    • 1 篇 软件工程
  • 26 篇 理学
    • 19 篇 系统科学
    • 18 篇 数学
    • 3 篇 海洋科学
    • 1 篇 天文学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 13 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 5 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 156 篇 learning-based c...
  • 23 篇 model predictive...
  • 14 篇 reinforcement le...
  • 11 篇 nonlinear model ...
  • 11 篇 adaptive control
  • 9 篇 robust control
  • 9 篇 optimal control
  • 8 篇 uncertainty
  • 7 篇 neural networks
  • 7 篇 mpc
  • 7 篇 machine learning
  • 7 篇 deep reinforceme...
  • 6 篇 vehicle dynamics
  • 6 篇 predictive contr...
  • 6 篇 data-driven cont...
  • 6 篇 adaptation model...
  • 5 篇 optimization
  • 5 篇 gaussian process...
  • 5 篇 artificial pancr...
  • 4 篇 safety

机构

  • 3 篇 shaanxi prov inn...
  • 2 篇 univ sci & techn...
  • 2 篇 o.yago nieto is ...
  • 2 篇 beijing inst tec...
  • 2 篇 politecn milan d...
  • 2 篇 shanghai jiao to...
  • 2 篇 cent south univ ...
  • 2 篇 natl univ singap...
  • 2 篇 suny stony brook...
  • 2 篇 max planck inst ...
  • 2 篇 univ hong kong d...
  • 2 篇 ctr automat & ro...
  • 2 篇 univ calif san d...
  • 2 篇 univ politecn ma...
  • 2 篇 zhongyuan univ t...
  • 2 篇 nnaisense lugano
  • 2 篇 beijing inst tec...
  • 2 篇 univ calif berke...
  • 1 篇 univ oslo dept i...
  • 1 篇 univ adelaide sc...

作者

  • 4 篇 lucia sergio
  • 3 篇 sonzogni beatric...
  • 3 篇 ferramosca anton...
  • 3 篇 kwok ka-wai
  • 3 篇 wang xiaomei
  • 3 篇 zhang peng
  • 3 篇 previdi fabio
  • 3 篇 krstic miroslav
  • 3 篇 wang lizhi
  • 3 篇 huang panfeng
  • 3 篇 jiang zhong-ping
  • 3 篇 zhang fan
  • 3 篇 karg benjamin
  • 2 篇 shamash yacov a.
  • 2 篇 bonzanini angelo...
  • 2 篇 yago nieto omayr...
  • 2 篇 barton kira
  • 2 篇 sotoudeh seyedeh...
  • 2 篇 zhou yifan
  • 2 篇 fan chuchu

语言

  • 149 篇 英文
  • 5 篇 其他
检索条件"主题词=Learning-based Control"
156 条 记 录,以下是81-90 订阅
排序:
Data-driven cooperative output regulation of multi-agent systems under distributed denial of service attacks
收藏 引用
Science China(Information Sciences) 2023年 第9期66卷 5-20页
作者: Weinan GAO Zhong-Ping JIANG State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Department of Electrical and Computer Engineering Tandon School of Engineering New York University
This paper addresses an optimal, cooperative output regulation problem for multi-agent systems with distributed denial of service attacks and unknown system dynamics. Unlike existing studies, the proposed solution is ... 详细信息
来源: 评论
A Sensitivity-based Data Augmentation Framework for Model Predictive control Policy Approximation
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC control 2022年 第11期67卷 6090-6097页
作者: Krishnamoorthy, Dinesh Harvard Univ Harvard John A Paulson Sch Engn & Appl Sci Cambridge MA 02138 USA
Approximating model predictive control (MPC) policy using expert-based supervised learning techniques requires labeled training datasets sampled from the MPC policy. This is typically obtained by sampling the feasible... 详细信息
来源: 评论
On Tuning Parameterized control Policies Online for Safety-Critical Systems - Applied to Biomedical Systems  22
On Tuning Parameterized Control Policies Online for Safety-C...
收藏 引用
22nd World Congress of the International Federation of Automatic control (IFAC)
作者: Krishnamoorthy, Dinesh Eindhoven Univ Technol Dept Mech Engn NL-5600 MB Eindhoven Netherlands
There are different approaches to tune a control policy that would result in a desired closed-loop performance. The typical design flow involves tuning the control policies offline using (high-fidelity) simulators unt... 详细信息
来源: 评论
learning-based Stochastic Model Predictive control with State-Dependent Uncertainty  2
Learning-based Stochastic Model Predictive Control with Stat...
收藏 引用
2nd Annual Conference on learning for Dynamics and control (L4DC)
作者: Bonzanini, Angelo D. Mesbah, Ali Univ Calif Berkeley Dept Chem & Biomol Engn Berkeley CA 94720 USA
The increasing complexity of modern engineering systems can introduce a great deal of uncertainty in our knowledge of system dynamics, which can, in turn, pose a major challenge to safe model-based control. This paper... 详细信息
来源: 评论
Robust pose tracking control for a fully-actuated hexarotor UAV based on Gaussian processes
收藏 引用
SICE JOURNAL OF control MEASUREMENT AND SYSTEM INTEGRATION 2022年 第2期15卷 201-210页
作者: Ibuki, Tatsuya Yoshioka, Hiroto Sampei, Mitsuji Meiji Univ Sch Sci & Technol Kawasaki Kanagawa Japan Esol Co Ltd Tokyo Japan Tokyo Inst Technol Sch Engn Tokyo Japan
This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to thei... 详细信息
来源: 评论
Behavioral Optimization in a Robotic Serial Reaching Task Using Predictive Information
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2023年 第3期15卷 1012-1019页
作者: Sen, Deniz de Kleijn, Roy Kachergis, George Leiden Univ Math Inst NL-2333 CA Leiden Netherlands Leiden Univ Leiden Inst Brain & Cognit NL-2333 CA Leiden Netherlands Stanford Univ Dept Psychol Stanford CA 94305 USA
Prediction is a powerful approach to minimize errors and control problems in familiar environments and tasks. In human motor execution of sequential action, context effects can be observed, such as anticipation of or ... 详细信息
来源: 评论
learning for control: An Inverse Optimization Approach
收藏 引用
IEEE control SYSTEMS LETTERS 2022年 6卷 187-192页
作者: Akhtar, Syed Adnan Kolarijani, Arman Sharifi Esfahani, Peyman Mohajerin Delft Univ Technol Delft Ctr Syst & Control NL-2628 CD Delft Netherlands
We present a learning method to learn the mapping from an input space to an action space, which is particularly suitable when the action is an optimal decision with respect to a certain unknown cost function. We use a... 详细信息
来源: 评论
A Deep-learning-based Approach to Eco-Driving-based Energy Management of Hybrid Electric Vehicles
收藏 引用
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION 2023年 第3期9卷 3742-3752页
作者: Sotoudeh, Seyedeh Mahsa HomChaudhuri, Baisravan IIT Dept Mech Mat & Aerosp Engn Chicago IL 60616 USA
This article proposes a deep-learning-based hierarchical control framework for eco-driving-based energy management of connected and automated hybrid electric vehicles (HEVs). The article focuses on a computationally e... 详细信息
来源: 评论
Near-Optimal Design of Safe Output-Feedback controllers From Noisy Data
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC control 2023年 第5期68卷 2699-2714页
作者: Furieri, Luca Guo, Baiwei Martin, Andrea Ferrari-Trecate, Giancarlo Ecole Polytech Fed Lausanne EPFL Inst Mech Engn CH-1015 Lausanne Switzerland
As we transition toward the deployment of data-driven controllers for black-box cyberphysical systems, complying with hard safety constraints becomes a primary concern. Two key aspects should be addressed when input-o... 详细信息
来源: 评论
Online Adversarial Stabilization of Unknown Networked Systems
收藏 引用
PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS 2023年 第1期7卷 1-43页
作者: Yu, Jing Ho, Dimitar Wierman, Adam CALTECH Pasadena CA 91125 USA
We investigate the problem of stabilizing an unknown networked linear system under communication constraints and adversarial disturbances. We propose the first provably stabilizing algorithm for the problem. The algor... 详细信息
来源: 评论