咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 7 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 计算机科学与技术...
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 公安技术
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 物理学
    • 1 篇 化学

主题

  • 14 篇 learning-based m...
  • 2 篇 gaussian process...
  • 2 篇 safe reinforceme...
  • 2 篇 differential dyn...
  • 2 篇 gaussian process...
  • 1 篇 energy managemen...
  • 1 篇 routing
  • 1 篇 electrically dri...
  • 1 篇 secondary freque...
  • 1 篇 heating/cooling ...
  • 1 篇 index terms- aut...
  • 1 篇 rov
  • 1 篇 deep-sea mining
  • 1 篇 occupancy estima...
  • 1 篇 biped locomotion
  • 1 篇 dynamic modellin...
  • 1 篇 data-driven cont...
  • 1 篇 q-learning
  • 1 篇 home automation
  • 1 篇 path tracking

机构

  • 1 篇 institute of int...
  • 1 篇 guangdong univ t...
  • 1 篇 univ padua dept ...
  • 1 篇 cent south univ ...
  • 1 篇 delft univ techn...
  • 1 篇 deepsea technol ...
  • 1 篇 univ sydney sch ...
  • 1 篇 northeast elect ...
  • 1 篇 zhejiang scienti...
  • 1 篇 northwestern pol...
  • 1 篇 cent south univ ...
  • 1 篇 virginia commonw...
  • 1 篇 beijing univ tec...
  • 1 篇 hexagon geosyst ...
  • 1 篇 cent south univ ...
  • 1 篇 ktm gmbh a-5230 ...
  • 1 篇 guangdong univ t...
  • 1 篇 siemens plm soft...
  • 1 篇 shaanxi univ sci...
  • 1 篇 clemson univ dep...

作者

  • 1 篇 dong sheng
  • 1 篇 huang zhiwu
  • 1 篇 kang jian
  • 1 篇 shu boyu
  • 1 篇 zuchen que
  • 1 篇 yuan zhaohui
  • 1 篇 eini roja
  • 1 篇 yaqiang he
  • 1 篇 mion enrico
  • 1 篇 li heng
  • 1 篇 abdelwahed sheri...
  • 1 篇 zhao hailong
  • 1 篇 surya p. n. sing...
  • 1 篇 zhou bin
  • 1 篇 zhong cheng
  • 1 篇 dalla libera alb...
  • 1 篇 zhang bo
  • 1 篇 zhang haihua
  • 1 篇 christopher c. w...
  • 1 篇 azita dabiri

语言

  • 14 篇 英文
检索条件"主题词=Learning-based Model Predictive Control"
14 条 记 录,以下是11-20 订阅
排序:
A learning-based Nonlinear model predictive controller for a Real Go-Kart based on Black-Box Dynamics modeling Through Gaussian Processes
收藏 引用
IEEE TRANSACTIONS ON control SYSTEMS TECHNOLOGY 2023年 第5期31卷 2055-2065页
作者: Picotti, Enrico Mion, Enrico Dalla Libera, Alberto Pavlovic, Josip Censi, Andrea Frazzoli, Emilio Beghi, Alessandro Bruschetta, Mattia Univ Padua Dept Informat Engn I-35122 Padua Italy KTM GmbH A-5230 Mattighofen Austria Hexagon Geosyst Serv AG CH-6300 Zug Switzerland Swiss Fed Inst Technol Inst Dynam Syst & Control CH-8092 Zurich Switzerland
Lately, nonlinear model predictive control (NMPC) has been successfully applied to (semi-) autonomous driving problems and has proven to be a very promising technique. However, accurate control models for real vehicle... 详细信息
来源: 评论
learning safety in model-based Reinforcement learning using MPC and Gaussian Processes  22
Learning safety in model-based Reinforcement Learning using ...
收藏 引用
22nd World Congress of the International Federation of Automatic control (IFAC)
作者: Airaldi, Filippo De Schutter, Bart Dabiri, Azita Delft Univ Technol Delft Ctr Syst & Control Mekelweg 2 NL-2628 CD Delft Netherlands
This paper proposes a method to encourage safety in model predictive control (MPC)-based Reinforcement learning (RL) via Gaussian Process (GP) regression. The framework consists of 1) a parametric MPC scheme that is e... 详细信息
来源: 评论
Quasi revenue-neutral congestion pricing in cities: Crediting drivers to avoid city centers
收藏 引用
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES 2022年 145卷
作者: Li, Ye Ramezani, Mohsen Univ Sydney Sch Civil Engn Sydney Australia Beijing Univ Technol Beijing Key Lab Traff Engn Beijing Peoples R China
This paper introduces a predictive congestion pricing method in cities wherein the tolls alter from region to region. We consider a large urban network is partitioned into multiple regions each with a well-defined Mac... 详细信息
来源: 评论
learning safety in model-based Reinforcement learning using MPC and Gaussian Processes
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 5759-5764页
作者: Filippo Airaldi Bart De Schutter Azita Dabiri Delft Center for Systems and Control Delft University of Technology Mekelweg 2 2628 CD Delft The Netherlands
This paper proposes a method to encourage safety in model predictive control (MPC)-based Reinforcement learning (RL) via Gaussian Process (GP) regression. The framework consists of 1) a parametric MPC scheme that is e... 详细信息
来源: 评论