咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 6 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 理学
    • 1 篇 数学

主题

  • 8 篇 linear perceptro...
  • 2 篇 msy
  • 2 篇 gompertz
  • 2 篇 ann
  • 2 篇 dss
  • 2 篇 learning curve
  • 2 篇 node perturbatio...
  • 2 篇 logistic
  • 1 篇 measuring transd...
  • 1 篇 lstm network
  • 1 篇 neural network e...
  • 1 篇 stochastic gradi...
  • 1 篇 physionet/comput...
  • 1 篇 gradient method
  • 1 篇 generalization e...
  • 1 篇 confidence level
  • 1 篇 on-line learning
  • 1 篇 noiseless baseli...
  • 1 篇 statistical mech...
  • 1 篇 metadata

机构

  • 2 篇 univ tokyo grad ...
  • 2 篇 riken brain sci ...
  • 1 篇 informatics engi...
  • 1 篇 mathematics stud...
  • 1 篇 matsushita excel...
  • 1 篇 waseda univ wabo...
  • 1 篇 fujitsu fsas inc...
  • 1 篇 kobe city coll t...
  • 1 篇 kobe city coll t...
  • 1 篇 kansai univ fac ...
  • 1 篇 silesian tech un...
  • 1 篇 north caucasus f...
  • 1 篇 shahrood univ te...
  • 1 篇 padjadjaran stat...
  • 1 篇 erato okanoya em...
  • 1 篇 padjadjaran stat...
  • 1 篇 north caucasus f...
  • 1 篇 japan sci & tech...
  • 1 篇 sysmex corp kobe...

作者

  • 2 篇 okanoya kazuo
  • 2 篇 okada masato
  • 2 篇 katahira kentaro
  • 2 篇 cho tatsuya
  • 1 篇 lyakhov pavel a.
  • 1 篇 supriatna asep k...
  • 1 篇 ramadhan agung p...
  • 1 篇 roj j.
  • 1 篇 vahabi mohsen
  • 1 篇 agung pre ramadh...
  • 1 篇 asep k. supriatn...
  • 1 篇 matsuno masafumi
  • 1 篇 sholahuddin asep
  • 1 篇 seki chihiro
  • 1 篇 lyakhova ulyana ...
  • 1 篇 sakurai shingo
  • 1 篇 kiladze mariya r...
  • 1 篇 asep sholahuddin
  • 1 篇 miyoshi seiji
  • 1 篇 hartono p

语言

  • 8 篇 英文
检索条件"主题词=Linear Perceptron"
8 条 记 录,以下是1-10 订阅
排序:
The Application of ANN-linear perceptron in the Development of DSS for a Fishery Industry  3rd
The Application of ANN-Linear Perceptron in the Development ...
收藏 引用
3rd Information Systems International Conference
作者: Sholahuddin, Asep Ramadhan, Agung Pre Supriatna, Asep K. Padjadjaran State Univ Fac Math & Nat Sci Dept Math Informat Engn Study Program Jatinangor 45363 Indonesia Padjadjaran State Univ Fac Math & Nat Sci Dept Math Math Study Program Jalan Raya Bandung Sumedang Km 21 Jatinangor 45363 Indonesia
Overfishing is a global environmental problem that risks fisheries since many of the fish stock of the fisheries have already reduced to below a tolerable level. One of solutions that often implemented in the fishery ... 详细信息
来源: 评论
The Application of ANN-linear perceptron in the Development of DSS for a Fishery Industry
收藏 引用
Procedia Computer Science 2015年 72卷 67-77页
作者: Asep Sholahuddin Agung Pre Ramadhan Asep K. Supriatna Informatics Engineering Study Program Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Padjadjaran Jalan Raya Bandung Sumedang Km. 21 Jatinangor-45363 Indonesia Mathematics Study Program Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Padjadjaran Jalan Raya Bandung Sumedang Km. 21 Jatinangor-45363 Indonesia
Overfishing is a global environmental problem that risks fisheries since many of the fish stock of the fisheries have already reduced to below a tolerable level. One of solutions that often implemented in the fishery ... 详细信息
来源: 评论
Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
收藏 引用
IEEE ACCESS 2023年 11卷 133744-133754页
作者: Kiladze, Mariya R. Lyakhova, Ulyana A. Lyakhov, Pavel A. Nagornov, Nikolay N. Vahabi, Mohsen North Caucasus Fed Univ Dept Math Modeling Stavropol 355017 Russia North Caucasus Fed Univ North Caucasus Ctr Math Res Stavropol 355017 Russia Shahrood Univ Technol Fac Elect Engn Shahrud *** Iran
Automatic classification of heart rhythm disturbances using an electrocardiogram is a reliable way to timely detect diseases of the cardiovascular system. The need to automate this process is to increase the number of... 详细信息
来源: 评论
Neural Network Based Real-time Correction of Transducer Dynamic Errors
收藏 引用
MEASUREMENT SCIENCE REVIEW 2013年 第6期13卷 286-291页
作者: Roj, J. Silesian Tech Univ Inst Measurement Sci Elect & Control Gliwice Poland
In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equat... 详细信息
来源: 评论
Node perturbation learning without noiseless baseline
收藏 引用
NEURAL NETWORKS 2011年 第3期24卷 267-272页
作者: Cho, Tatsuya Katahira, Kentaro Okanoya, Kazuo Okada, Masato Univ Tokyo Grad Sch Frontier Sci Chiba 2778561 Japan Riken Brain Sci Inst Wako Saitama 3510198 Japan Japan Sci & Technol Agcy ERATO Okanoya Emot Informat Project Wako Saitama 3510198 Japan
Node perturbation learning is a stochastic gradient descent method for neural networks. It estimates the gradient by comparing an evaluation of the perturbed output and the unperturbed output performance, which we cal... 详细信息
来源: 评论
Optimal node perturbation in linear perceptrons with uncertain eligibility trace
收藏 引用
NEURAL NETWORKS 2010年 第2期23卷 219-225页
作者: Katahira, Kentaro Cho, Tatsuya Okanoya, Kazuo Okada, Masato Univ Tokyo Grad Sch Frontier Sci Chiba 2778561 Japan RIKEN Brain Sci Inst Wako Saitama 3510198 Japan ERATO Okanoya Emot Informat Project Japan Sci & Technol Agcy Wako Saitama 3510198 Japan
Node perturbation learning has been receiving Much attention as a method for achieving stochastic gradient descent. As it does not require direct gradient calculations, it can be applied to a reinforcement learning fr... 详细信息
来源: 评论
A theoretical analysis of on-line learning using correlated examples
收藏 引用
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES 2008年 第9期E91A卷 2663-2670页
作者: Seki, Chihiro Sakurai, Shingo Matsuno, Masafumi Miyoshi, Seiji Kobe City Coll Technol Adv Course Elect & Elect Engn Kobe Hyogo 6512194 Japan Matsushita Excel Technol Co Ltd Osaka 5300001 Japan Sysmex Corp Kobe Hyogo 6510073 Japan Kobe City Coll Technol Dept Elect Engn Kobe Hyogo 6512194 Japan Fujitsu FSAS Inc Tokyo 1050011 Japan Kansai Univ Fac Engn Sci Dept Elect & Elect Engn Suita Osaka 5648680 Japan
In this paper we analytically investigate the generalization performance of learning using correlated inputs in the framework of on-line learning with a statistical mechanical method. We consider a model composed of l... 详细信息
来源: 评论
Ensemble of linear perceptrons with confidence level output
Ensemble of linear perceptrons with confidence level output
收藏 引用
4th International Conference on Hybrid Intelligent Systems (HIS 04)
作者: Hartono, P Hashimoto, S Waseda Univ WABOT HOUSE Lab Shinjuku Ku Tokyo 1698555 Japan
In this study we introduce an ensemble of neural networks, in which each member is a linear perceptron. Our main objective is to build an ensemble of neural networks that can automatically and effectively divide the p... 详细信息
来源: 评论