咨询与建议

限定检索结果

文献类型

  • 16 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 工学
    • 13 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 光学工程
    • 2 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 食品科学与工程(可...
  • 2 篇 理学
    • 2 篇 物理学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 23 篇 linear regressio...
  • 13 篇 face recognition
  • 4 篇 dimensionality r...
  • 4 篇 feature extracti...
  • 2 篇 linear discrimin...
  • 2 篇 ar face database
  • 2 篇 linear discrimin...
  • 2 篇 reconstructive d...
  • 2 篇 sparse represent...
  • 2 篇 finger knuckle p...
  • 2 篇 principal compon...
  • 1 篇 wavelet transfor...
  • 1 篇 collaborative re...
  • 1 篇 histogram equali...
  • 1 篇 set-based object...
  • 1 篇 parameterless
  • 1 篇 image set classi...
  • 1 篇 deep loss functi...
  • 1 篇 tegillarca grano...
  • 1 篇 subspace methods

机构

  • 2 篇 nanjing univ aer...
  • 2 篇 nanjing univ sci...
  • 1 篇 ssn coll engn de...
  • 1 篇 department of co...
  • 1 篇 harbin inst tech...
  • 1 篇 nanjing univ pos...
  • 1 篇 college of elect...
  • 1 篇 department of el...
  • 1 篇 murdoch univ dis...
  • 1 篇 visvesvaraya tec...
  • 1 篇 shaanxi normal u...
  • 1 篇 harbin inst tech...
  • 1 篇 natl cheng kung ...
  • 1 篇 college of life ...
  • 1 篇 jiangxi mfg tech...
  • 1 篇 tianjin univ sch...
  • 1 篇 natl cheng kung ...
  • 1 篇 univ macau fac s...
  • 1 篇 univ south austr...
  • 1 篇 shaanxi univ sci...

作者

  • 3 篇 yang jar-ferr
  • 3 篇 feng qingxiang
  • 2 篇 jin zhong
  • 2 篇 chen yi
  • 2 篇 pan jeng-shyang
  • 2 篇 yuan chun
  • 2 篇 huang shih-ming
  • 2 篇 zhu qi
  • 1 篇 xi chen
  • 1 篇 zhang dapeng
  • 1 篇 yu yunlong
  • 1 篇 qu xiaochao
  • 1 篇 peng yali
  • 1 篇 zhang hongzhi
  • 1 篇 liuwei meng
  • 1 篇 koc mehmet
  • 1 篇 mallieswaran g. ...
  • 1 篇 el-hawary h. m.
  • 1 篇 zhang zhongfei
  • 1 篇 lee ivan

语言

  • 21 篇 英文
  • 2 篇 其他
检索条件"主题词=Linear Regression Classification"
23 条 记 录,以下是1-10 订阅
排序:
An improvement to linear regression classification for face recognition
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2019年 第9期10卷 2229-2243页
作者: Peng, Yali Ke, Jingcheng Liu, Shigang Li, Jun Lei, Tao Key Lab Modern Teaching Technol Minist Educ Xian 710062 Shaanxi Peoples R China Engn Lab Teaching Informat Technol Shaanxi Prov Xian 710119 Shaanxi Peoples R China Shaanxi Normal Univ Sch Comp Sci Xian 710119 Shaanxi Peoples R China Southeast Univ Nanjing Sch Automat Nanjing 210096 Jiangsu Peoples R China Shaanxi Univ Sci & Technol Coll Elect & Informat Engn Xian 710021 Shaanxi Peoples R China
linear regression classification (LRC) has attracted a great amount of attention owning to its promising performance in face recognition. However, its performance will dramatically decline in the scenario of limited t... 详细信息
来源: 评论
Illumination Robust Face Recognition Using Spatial Expansion Local Histogram Equalization and Locally linear regression classification  3
Illumination Robust Face Recognition Using Spatial Expansion...
收藏 引用
3rd International Conference on Computer and Communication Systems (ICCCS)
作者: Chang, Pei-Chun Chen, Yong-Sheng Lee, Chang-Hsing Lien, Cheng-Chang Han, Chin-Chuan Natl Chiao Tung Univ Dept Comp Sci Hsinchu Taiwan Chung Hua Univ Dept Comp Sci & Inf Eng Hsinchu Taiwan Natl United Univ Dept Comp Sci & Inf Eng Miaoli Taiwan
Robust face recognition under illumination variations is a critical problem in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spati... 详细信息
来源: 评论
Partially-Occluded Face Recognition Using Weighted Module linear regression classification
Partially-Occluded Face Recognition Using Weighted Module Li...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Chou, Yang-Ting Yang, Jar-Ferr Natl Cheng Kung Univ Dept Elect Engn Inst Comp & Commun Engn Tainan Taiwan
Accuracy and speed of face recognition frameworks are two foremost concerns for practical applications in recent researches. linear regression classification (LRC) is a very famous and powerful approach for face recog... 详细信息
来源: 评论
Partially-occluded face recognition using weighted module linear regression classification
Partially-occluded face recognition using weighted module li...
收藏 引用
International Symposium on Circuits and Systems
作者: Yang-Ting Chou Jar-Ferr Yang Institute of Computer and Communication Engineering Department of Electrical Engineering National Cheng Kung University Tainan Taiwan
Accuracy and speed of face recognition frameworks are two foremost concerns for practical applications in recent researches. linear regression classification (LRC) is a very famous and powerful approach for face recog... 详细信息
来源: 评论
Double linear regression classification for face recognition
收藏 引用
JOURNAL OF MODERN OPTICS 2015年 第4期62卷 288-295页
作者: Feng, Qingxiang Zhu, Qi Tang, Lin-Lin Pan, Jeng-Shyang Harbin Inst Technol Shenzhen Grad Sch Shenzhen Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Jiangsu Peoples R China
A new classifier designed based on linear regression classification (LRC) classifier and simple-fast representation-based classifier (SFR), named double linear regression classification (DLRC) classifier, is proposed ... 详细信息
来源: 评论
Effective face recognition using dual linear collaborative discriminant regression classification algorithm
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第5期81卷 6899-6922页
作者: Hosgurmath, Sangamesh Mallappa, Viswanatha Vanjre Patil, Nagaraj B. Petli, Vishwanath Visvesvaraya Technol Univ Dept Elect & Commun Engn Belagavi India HEK Soc SLN Coll Engn Dept Elect & Commun Engn Raichur India Govt Engn Coll Dept Comp Sci & Engn Gangavathi Karnataka India
In recent decades, face recognition is an attractive and emerging research area in computer vision and pattern recognition applications. Still, facial recognition is a challenging task due to the following factors;dif... 详细信息
来源: 评论
Combination of linear regression classification and collaborative representation classification
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2014年 第3-4期25卷 833-838页
作者: Zhang, Hongzhi Wang, Faqiang Chen, Yan Zhang, Dapeng Wang, Kuanquan Liu, Jingdong Harbin Inst Technol Sch Comp Sci & Technol Harbin 150006 Peoples R China Northeast Forestry Univ Coll Informat & Comp Engn Harbin Peoples R China Harbin Vicog Intelligent Syst Co Ltd Harbin Peoples R China
classification using the l (2)-norm-based representation is usually computationally efficient and is able to obtain high accuracy in the recognition of faces. Among l (2)-norm-based representation methods, linear regr... 详细信息
来源: 评论
Application of linear regression classification to low-dimensional datasets
收藏 引用
NEUROCOMPUTING 2014年 131卷 331-335页
作者: Koc, Mehmet Barkana, Atalay Bilecik Seyh Edebali Univ Dept Elect & Elect Engn TR-11210 Bilecik Turkey Anadolu Univ Dept Elect & Elect Engn TR-26555 Eskisehir Turkey
The Traditional linear regression classification (LRC) method fails when the number of data in the training set is greater than their dimensions. In this work, we proposed a new implementation of LRC to overcome this ... 详细信息
来源: 评论
classification by Principal Component regression in the Real and Hypercomplex Domains
收藏 引用
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023年 第8期48卷 10099-10108页
作者: El-Melegy, Moumen T. Kamal, Aliaa T. Hussain, Khaled F. El-Hawary, H. M. Assiut Univ Fac Engn Elect Engn Dept Assiut Egypt Assiut Univ Fac Comp & Informat Comp Sci Dept Assiut Egypt Assiut Univ Fac Sci Math Dept Assiut Egypt
linear regression is a simple and widely used machine learning algorithm. It is a statistical approach for modeling the relationship between a scalar variable and one or more variables. In this paper, a classification... 详细信息
来源: 评论
A strategy to significantly improve the classification accuracy of LIBS data:application for the determination of heavy metals in Tegillarca granosa
收藏 引用
Plasma Science and Technology 2021年 第8期23卷 118-126页
作者: Yangli XU Liuwei MENG Xiaojing CHEN Xi CHEN Laijin SU Leiming YUAN Wen SHI Guangzao HUANG Wenzhou Vocational College of Science and Technology Wenzhou 325006People's Republic of China College of Electrical and Electronic Engineering Wenzhou UniversityWenzhou 325035People's Republic of China Research and Development Department Hangzhou Goodhere Biotechnology Co.LtdHangzhou 311100People's Republic of China College of Life and Environmental Science Wenzhou UniversityWenzhou 325035People's Republic of China
Tegillarca granosa,as a popular seafood among consumers,is easily susceptible to pollution from heavy ***,it is essential to develop a rapid detection method for Tegillarca *** this issue,five categories of Tegillarca... 详细信息
来源: 评论