咨询与建议

限定检索结果

文献类型

  • 562 篇 期刊文献
  • 133 篇 会议
  • 14 篇 学位论文
  • 2 册 图书

馆藏范围

  • 711 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 363 篇 理学
    • 213 篇 统计学(可授理学、...
    • 147 篇 数学
    • 45 篇 生物学
    • 23 篇 地球物理学
    • 21 篇 物理学
    • 19 篇 化学
  • 335 篇 工学
    • 114 篇 计算机科学与技术...
    • 65 篇 电气工程
    • 51 篇 环境科学与工程(可...
    • 36 篇 控制科学与工程
    • 29 篇 石油与天然气工程
    • 25 篇 土木工程
    • 21 篇 仪器科学与技术
    • 21 篇 动力工程及工程热...
    • 21 篇 软件工程
    • 19 篇 机械工程
    • 18 篇 材料科学与工程(可...
    • 18 篇 信息与通信工程
    • 17 篇 电子科学与技术(可...
    • 16 篇 水利工程
    • 16 篇 测绘科学与技术
    • 14 篇 建筑学
    • 14 篇 化学工程与技术
    • 13 篇 生物医学工程(可授...
  • 149 篇 经济学
    • 138 篇 应用经济学
    • 13 篇 理论经济学
  • 84 篇 医学
    • 46 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 13 篇 公共卫生与预防医...
  • 68 篇 管理学
    • 49 篇 管理科学与工程(可...
  • 32 篇 农学
  • 12 篇 教育学
  • 10 篇 法学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 711 篇 linear regressio...
  • 17 篇 multicollinearit...
  • 13 篇 prediction
  • 10 篇 regression analy...
  • 10 篇 consistency
  • 9 篇 ridge regression
  • 9 篇 machine learning
  • 8 篇 artificial neura...
  • 8 篇 asymptotic norma...
  • 7 篇 covid-19
  • 7 篇 censored data
  • 7 篇 minimax estimati...
  • 7 篇 mean square erro...
  • 7 篇 correlation anal...
  • 7 篇 variable selecti...
  • 7 篇 monte carlo simu...
  • 7 篇 parameter estima...
  • 7 篇 principal compon...
  • 6 篇 measurement erro...
  • 6 篇 prior informatio...

机构

  • 8 篇 univ lucknow dep...
  • 6 篇 indian inst tech...
  • 4 篇 hubei normal uni...
  • 4 篇 brno university ...
  • 4 篇 hangzhou dianzi ...
  • 4 篇 suny binghamton ...
  • 4 篇 univ allahabad d...
  • 3 篇 univ allahabad d...
  • 3 篇 univ tokyo fac e...
  • 3 篇 univ dortmund de...
  • 3 篇 univ educ dept m...
  • 3 篇 florida int univ...
  • 3 篇 huaiyin inst tec...
  • 2 篇 indian inst tech...
  • 2 篇 univ new s wales...
  • 2 篇 univ toronto dep...
  • 2 篇 natl inst techno...
  • 2 篇 univ cambridge d...
  • 2 篇 univ chinese aca...
  • 2 篇 manipal univ jai...

作者

  • 8 篇 shalabh
  • 7 篇 trenkler g
  • 5 篇 yu qiqing
  • 5 篇 kubokawa tatsuya
  • 5 篇 hu hongchang
  • 5 篇 stahlecker p
  • 5 篇 chaturvedi a
  • 4 篇 gonzalez-rodrigu...
  • 4 篇 srivastava ak
  • 4 篇 kibria b. m. gol...
  • 4 篇 hu sanqing
  • 4 篇 srivastava vk
  • 4 篇 toutenburg h
  • 3 篇 lovell nh
  • 3 篇 srivastava muni ...
  • 3 篇 gross j
  • 3 篇 wiedermann wolfg...
  • 3 篇 janner m
  • 3 篇 liu xu-qing
  • 3 篇 colubi ana

语言

  • 668 篇 英文
  • 35 篇 其他
  • 6 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 西班牙文
  • 1 篇 荷兰文
  • 1 篇 葡萄牙文
检索条件"主题词=Linear Regression Model"
711 条 记 录,以下是11-20 订阅
排序:
Uncertain linear regression model and its application
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2017年 第3期28卷 559-564页
作者: Guo, Haiying Wang, Xiaosheng Gao, Zhichao Hebei Univ Engn Sch Sci Handan 056038 Peoples R China
regression analysis is a statistical process for estimating the relationships among variables based on probability. Because not all the imprecise quantities can be described by random variables, it is necessary to inv... 详细信息
来源: 评论
Hidden Markov linear regression model and its Parameter Estimation
收藏 引用
IEEE ACCESS 2020年 8卷 187037-187042页
作者: Liu, Hefei Wang, Kunqjnu Li, Yong Qujing Normal Univ Sch Math & Stat Qujing 655011 Peoples R China Qujing Normal Univ Sch Informat & Engn Qujing 655011 Peoples R China
This article first defines a hidden Markov linear regression model for the purpose of further studying the mutual transformation between different states in the linear regression model, and the regression relationship... 详细信息
来源: 评论
Bayesian empirical likelihood of linear regression model with current status data
收藏 引用
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 2023年 第20期52卷 7323-7333页
作者: Liu, Binxia Zhao, Hui Wang, Chunjie Zhongnan Univ Econ & Law Coll Stat & Math Wuhan Peoples R China Changchun Univ Technol Coll Math & Stat Changchun 130012 Peoples R China
Empirical likelihood has been widely used in survival data analysis recently. In this paper, we combine Bayesian idea with empirical likelihood and develop a Bayesian empirical likelihood method to analyze current sta... 详细信息
来源: 评论
Empirical likelihood ratio tests for the linear regression model with inequality constraints
收藏 引用
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 2016年 第20期45卷 5933-5945页
作者: Chen, Li Yunnan Univ Sch Math & Stat Kunming 650091 Peoples R China
In this article, empirical likelihood is applied to the linear regression model with inequality constraints. We prove that asymptotic distribution of the adjusted empirical likelihood ratio test statistic is a weighte... 详细信息
来源: 评论
Identifiability conditions for the linear regression model under right censoring
收藏 引用
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 2022年 第1期51卷 116-134页
作者: Yu, Qiqing Dong, Junyi SUNY Binghamton Dept Math Sci Binghamton NY 13902 USA St Ambrose Univ Math & Stat Dept Davenport IA USA
The consistency of various estimators under the semi-parametric linear regression model and the standard right censorship model (SPLRRC model) has been studied under various assumptions since the 1970s. These assumpti... 详细信息
来源: 评论
Consistency of semi-parametric maximum likelihood estimator under identifiability conditions for the linear regression model with type I right censoring data
收藏 引用
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 2023年 第22期52卷 8152-8168页
作者: Dong, Junyi St Ambrose Univ Math & Stat Dept Davenport IA 52803 USA
The consistency of the semi-parametric maximum likelihood estimator (SMLE) under the semi-parametric linear regression model with right-censoring data (SPLRRC model) has not been studied under the necessary and suffic... 详细信息
来源: 评论
linear plus quadratic (LPQ) quasiminimax estimation in the linear regression model
收藏 引用
ACTA APPLICANDAE MATHEMATICAE 1996年 第1期43卷 97-111页
作者: Knautz, H UNIV HAMBURG INST STAT & ECONOMETR D-20146 HAMBURG GERMANY
If the errors in the linear regression model are assumed to be independent with nonvanishing third and finite fourth moments, then it is possible to improve all linear estimators by so-called linear plus quadratic (LP... 详细信息
来源: 评论
Removing temperature drift for bee colony weight measurements based on linear regression model and Kalman filter
收藏 引用
BIOSYSTEMS ENGINEERING 2023年 第1期233卷 1-20页
作者: Jia, Bowen Yang, Fangchao Zhao, Menghao Chu, Liangyu Chen, Bingxue Li, Honggang Li, Qingqing Zhang, Deng Li, Yunfan Lu, Chuanqi Lu, Yuntao Liu, Shengping Hong, Wei Huazhong Univ Sci & Technol PGMF Hubei Key Lab Gravitat & Quantum Phys MOE Key Lab Fundamental Phys Quant Measurement Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Phys Wuhan 430074 Peoples R China Intelligent Comp Hardware Ctr Zhejiang Lab Hangzhou 311121 Peoples R China Huazhong Univ Sci & Technol Tongji Med Coll Sch Basic Med Wuhan 430074 Peoples R China Huazhong Agr Univ Coll Engn Wuhan 430070 Peoples R China Chinese Acad Agr Sci Minist Agr & Rural Affairs Agr Informat Inst Key Lab Agr Blockchain Applicat Beijing 100081 Peoples R China
In precision beekeeping, bee colony weight is an important indicator to monitor the behaviours such as foraging and swarming. However, ambient temperature variations can greatly affect the measured values. In this pap... 详细信息
来源: 评论
A new uncertain linear regression model based on equation deformation
收藏 引用
SOFT COMPUTING 2021年 第20期25卷 12817-12824页
作者: Wang, Shuai Ning, Yufu Shi, Hongmei Shandong Youth Univ Polit Sci Sch Informat Engn 31699 Jingshi East Rd Jinan Peoples R China Key Lab Informat Secur & Intelligent Control Univ Jinan 250100 Peoples R China Shandong Agr & Engn Univ Sch Informat Sci & Engn 866 Nongganyuan Rd Jinan Peoples R China
When the observed data are imprecise, the uncertain regression model is more suitable for the linear regression analysis. Least squares estimation can fully consider the given data and minimize the sum of squares of r... 详细信息
来源: 评论
Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model
收藏 引用
AUTOMATION AND REMOTE CONTROL 2017年 第10期78卷 1819-1836页
作者: Goryainova, E. R. Botvinkin, E. A. Natl Res Univ Higher Sch Econ Moscow Russia SJC Europlan Moscow Russia
We consider LS-, LAD-, R-, M-, S-, LMS-, LTS-, MM-, and HBR-estimates for the parameters of a linear regression model with unknown noise distribution. With computer modeling for medium sized samples, we compare the ac... 详细信息
来源: 评论