咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 理学
    • 12 篇 数学
  • 3 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 12 篇 linear discrete ...
  • 5 篇 tikhonov regular...
  • 5 篇 iterative method
  • 3 篇 truncated iterat...
  • 2 篇 tensor arnoldi p...
  • 2 篇 discrepancy prin...
  • 2 篇 arnoldi algorith...
  • 2 篇 tensor tikhonov ...
  • 2 篇 gmres
  • 1 篇 tikhonov
  • 1 篇 subspace method
  • 1 篇 subspace truncat...
  • 1 篇 linear system of...
  • 1 篇 arnoldi process
  • 1 篇 t-product
  • 1 篇 multiparameter t...
  • 1 篇 numerical comput...
  • 1 篇 image restoratio...
  • 1 篇 generalized cros...
  • 1 篇 truncated singul...

机构

  • 6 篇 kent state univ ...
  • 1 篇 kent state univ ...
  • 1 篇 univ padua dipar...
  • 1 篇 univ bath dept m...
  • 1 篇 chengdu univ tec...
  • 1 篇 eindhoven univ t...
  • 1 篇 univ littoral la...
  • 1 篇 univ kentucky de...
  • 1 篇 res org informat...
  • 1 篇 sichuan univ sci...
  • 1 篇 sapienza univ ro...
  • 1 篇 grad univ adv st...
  • 1 篇 graduate school ...
  • 1 篇 univ padua dept ...
  • 1 篇 univ littoral la...
  • 1 篇 univ trieste dip...
  • 1 篇 department of ma...

作者

  • 6 篇 reichel lothar
  • 3 篇 novati paolo
  • 2 篇 russo maria rosa...
  • 2 篇 ugwu ugochukwu o...
  • 1 篇 ye qiang
  • 1 篇 neuman arthur
  • 1 篇 morikuni keiichi
  • 1 篇 sadok h.
  • 1 篇 gazzola silvia
  • 1 篇 nao kuroiwa
  • 1 篇 yin feng
  • 1 篇 hayami ken
  • 1 篇 huang guangxin
  • 1 篇 reichel l.
  • 1 篇 zwaan ian n.
  • 1 篇 takashi nodera
  • 1 篇 liu yuanyuan
  • 1 篇 noschese silvia
  • 1 篇 neuman a.
  • 1 篇 hochstenbach mic...

语言

  • 11 篇 英文
  • 1 篇 其他
检索条件"主题词=Linear discrete ill-posed problem"
12 条 记 录,以下是1-10 订阅
排序:
Implementations of range restricted iterative methods for linear discrete ill-posed problems
收藏 引用
linear ALGEBRA AND ITS APPLICATIONS 2012年 第10期436卷 3974-3990页
作者: Neuman, A. Reichel, L. Sadok, H. Kent State Univ Dept Math Sci Kent OH 44242 USA Univ Littoral Lab Math Pures & Appl Ctr Univ Mi Voix F-62228 Calais France
This paper is concerned with iterative solution methods for large linear systems of equations with a matrix of ill-determined rank and an error-contaminated right-hand side. The numerical solution is delicate, because... 详细信息
来源: 评论
Arnoldi decomposition, GMRES, and preconditioning for linear discrete ill-posed problems
收藏 引用
APPLIED NUMERICAL MATHEMATICS 2019年 142卷 102-121页
作者: Gazzola, Silvia Noschese, Silvia Novati, Paolo Reichel, Lothar Univ Bath Dept Math Sci Bath BA2 7AY Avon England SAPIENZA Univ Roma Dipartimento Matemat Guido Castelnuovo Ple A Moro 2 I-00185 Rome Italy Univ Trieste Dipartimento Matemat & Geosci Via Valerio 12-1 I-34127 Trieste Italy Kent State Univ Dept Math Sci Kent OH 44242 USA
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations that arise from the discretization of linear well-posed problems, such as boundary value problems for elliptic p... 详细信息
来源: 评论
FGMRES for linear discrete ill-posed problems
收藏 引用
APPLIED NUMERICAL MATHEMATICS 2014年 75卷 175-187页
作者: Morikuni, Keiichi Reichel, Lothar Hayami, Ken Res Org Informat & Syst Natl Inst Informat Chiyoda Ku Tokyo 1018430 Japan Kent State Univ Dept Math Sci Kent OH 44242 USA Grad Univ Adv Studies Sch Multidisciplinary Sci Dept Informat Chiyoda Ku Tokyo 1018430 Japan
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES does not always perform well when applied to the solution of linear systems of equations that ar... 详细信息
来源: 评论
Algorithms for range restricted iterative methods for linear discrete ill-posed problems
收藏 引用
NUMERICAL ALGORITHMS 2012年 第2期59卷 325-331页
作者: Neuman, Arthur Reichel, Lothar Sadok, Hassane Kent State Univ Dept Math Sci Kent OH 44242 USA Univ Littoral Lab Math Pures & Appl F-62228 Calais France
Range restricted iterative methods based on the Arnoldi process are attractive for the solution of large nonsymmetric linear discrete ill-posed problems with error-contaminated data (right-hand side). Several derivati... 详细信息
来源: 评论
A Note on the GMRES Method for linear discrete ill-posed problems
收藏 引用
Advances in Applied Mathematics and Mechanics 2009年 第6期1卷 816-829页
作者: Nao Kuroiwa Takashi Nodera Graduate School of Science and Technology Keio University3-14-1HiyoshiKohokuYokohamaKanagawaJapan Department of Mathematics Faculty of Science and TechnologyKeio University3-14-1HiyoshiKohokuYokohamaKanagawaJapan
In this paper,we are presenting a proposal for new modified algorithms for RRGMRES and *** is known that RRGMRES and AGMRES are viable methods for solving linear discrete ill-posed *** this paper we have focused on th... 详细信息
来源: 评论
Multidirectional Subspace Expansion for One-Parameter and Multiparameter Tikhonov Regularization
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2017年 第3期70卷 990-1009页
作者: Zwaan, Ian N. Hochstenbach, Michiel E. Eindhoven Univ Technol Dept Math & Comp Sci POB 513 NL-5600 MB Eindhoven Netherlands
Tikhonov regularization is a popular method to approximate solutions of linear discrete ill-posed problems when the observed or measured data is contaminated by noise. Multiparameter Tikhonov regularization may improv... 详细信息
来源: 评论
Tensor Krylov subspace methods with an invertible linear transform product applied to image processing
收藏 引用
APPLIED NUMERICAL MATHEMATICS 2021年 166卷 186-207页
作者: Reichel, Lothar Ugwu, Ugochukwu O. Kent State Univ Dept Math Sci Kent OH 44242 USA
This paper discusses several transform-based methods for solving linear discrete ill-posed problems for third order tensor equations based on a tensor-tensor product defined by an invertible linear transform. linear t... 详细信息
来源: 评论
A GCV based Arnoldi-Tikhonov regularization method
收藏 引用
BIT NUMERICAL MATHEMATICS 2014年 第2期54卷 501-521页
作者: Novati, Paolo Russo, Maria Rosaria Univ Padua Dipartimento Matemat Padua Italy
For the solution of linear discrete ill-posed problems, in this paper we consider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation for the computation of the regularization parameter at each i... 详细信息
来源: 评论
Adaptive Arnoldi-Tikhonov regularization for image restoration
收藏 引用
NUMERICAL ALGORITHMS 2014年 第4期65卷 745-757页
作者: Novati, Paolo Russo, Maria Rosaria Univ Padua Dept Pure Math I-35121 Padua Italy
In the framework of the numerical solution of linear systems arising from image restoration, in this paper we present an adaptive approach based on the reordering of the image approximations obtained with the Arnoldi-... 详细信息
来源: 评论
A generalized LSQR algorithm
收藏 引用
NUMERICAL linear ALGEBRA WITH APPLICATIONS 2008年 第7期15卷 643-660页
作者: Reichel, Lothar Ye, Qiang Kent State Univ Dept Math Sci Kent OH 44242 USA Univ Kentucky Dept Math Lexington KY 40506 USA
LSQR is a popular iterative method for the solution of large linear system of equations and least-squares problems. This paper presents a generalization of LSQR that allows the choice of an arbitrary initial vector fo... 详细信息
来源: 评论