咨询与建议

限定检索结果

文献类型

  • 144 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 理学
    • 143 篇 数学
    • 1 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 7 篇 工学
    • 4 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 145 篇 linear forms in ...
  • 37 篇 diophantine equa...
  • 23 篇 reduction method
  • 15 篇 fibonacci number...
  • 14 篇 repdigit
  • 12 篇 baker's method
  • 10 篇 diophantine equa...
  • 9 篇 fibonacci number
  • 8 篇 thue equations
  • 7 篇 pell equation
  • 6 篇 lucas number
  • 6 篇 repdigits
  • 6 篇 diophantine m-tu...
  • 5 篇 exponential diop...
  • 5 篇 continued fracti...
  • 4 篇 lucas numbers
  • 4 篇 pillai's problem
  • 4 篇 linear recurrenc...
  • 4 篇 pellian equation...
  • 3 篇 generalized fibo...

机构

  • 9 篇 univ brasilia de...
  • 7 篇 king abdulaziz u...
  • 6 篇 nihon univ coll ...
  • 6 篇 sakarya univ dep...
  • 6 篇 univ zagreb fac ...
  • 6 篇 univ witwatersra...
  • 5 篇 unam ctr ciencia...
  • 5 篇 univ witwatersra...
  • 5 篇 purdue univ nort...
  • 4 篇 univ brasilia de...
  • 4 篇 bingol univ dept...
  • 4 篇 purdue univ n ce...
  • 4 篇 sakarya univ mat...
  • 4 篇 graz univ techno...
  • 3 篇 romanian acad si...
  • 3 篇 univ waterloo de...
  • 3 篇 purdue univ nort...
  • 3 篇 sakarya univ app...
  • 3 篇 univ valle dept ...
  • 2 篇 univ cauca dept ...

作者

  • 21 篇 luca florian
  • 14 篇 togbe alain
  • 13 篇 marques diego
  • 11 篇 erduvan fatih
  • 10 篇 keskin refik
  • 8 篇 cipu mihai
  • 7 篇 siar zafer
  • 7 篇 ddamulira mahadi
  • 7 篇 fujita yasutsugu
  • 7 篇 mignotte maurice
  • 6 篇 filipin alan
  • 6 篇 adedji kouessi n...
  • 5 篇 he bo
  • 5 篇 bravo jhon j.
  • 3 篇 alan murat
  • 3 篇 gomez carlos a.
  • 3 篇 batte herbert
  • 3 篇 akhtari shabnam
  • 3 篇 kandhil neelam
  • 3 篇 ziegler volker

语言

  • 115 篇 英文
  • 29 篇 其他
检索条件"主题词=Linear forms in logarithms"
145 条 记 录,以下是21-30 订阅
排序:
On the diophantine equation x2-2m=±yn
收藏 引用
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 1997年 第11期125卷 3203-3208页
作者: Bugeaud, Y Univ Strasbourg 1 UFR Math F-67084 Strasbourg France
One of the purposes of this note is to correct the proof of a recent result of Y. Guo & M. Le on the equation x(2) - 2(m) = y(n). Moreover, we prove that the diophantine equation x(2) - 2(m) = +/- y(n), x, y, m, n... 详细信息
来源: 评论
The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences
收藏 引用
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY 2013年 第3期44卷 455-468页
作者: Marques, Diego Univ Brasilia Dept Matemat BR-70910900 Brasilia DF Brazil
For k a parts per thousand yen 2, the k-generalized Fibonacci sequence (F (n) ((k)) ) (n) is defined by the initial values 0, 0, aEuro broken vertical bar, 0,1 (k terms) and such that each term afterwards is the sum o... 详细信息
来源: 评论
Diophantine triples with largest two elements in common
收藏 引用
PERIODICA MATHEMATICA HUNGARICA 2021年 第1期82卷 56-68页
作者: Cipu, Mihai Dujella, Andrej Fujita, Yasutsugu Romanian Acad Simion Stoilow Inst Math Res Unit 5 POB 1-764 RO-014700 Bucharest Romania Univ Zagreb Fac Sci Dept Math Bijenicka Cesta 30 Zagreb 10000 Croatia Nihon Univ Coll Ind Technol Dept Math 2-11-1 Shin Ei Narashino Chiba Japan
In this paperwe prove that if {a, b, c} is a Diophantine triple with a < b < c, then{a+1, b, c} cannot be a Diophantine triple. Moreover, we show that if {a1, b, c} and {a(2), b, c} are Diophantine triples with ... 详细信息
来源: 评论
A Diophantine equation related to the sum of powers of two consecutive generalized Fibonacci numbers
收藏 引用
JOURNAL OF NUMBER THEORY 2015年 156卷 1-14页
作者: Chaves, Ana Paula Marques, Diego Univ Fed Goias Inst Matemat & Estat BR-74690612 Goiania Go Brazil Univ Brasilia Dept Matemat BR-70910900 Brasilia DF Brazil
Let (F-n) n >= 0 be the Fibonacci sequence given by Fm+2 = Fm+1 + F-m, for m >= 0, where F-0 = 0 and F-1 = 1. In 2011, Luca and Oyono proved that if F-m(s) + F-m+1(s) is a Fibonacci number, with m >= 2, then ... 详细信息
来源: 评论
On the nonnegative integer solutions of the equation Fn + Fm = ya
收藏 引用
QUAESTIONES MATHEMATICAE 2021年 第8期44卷 1133-1139页
作者: Kihel, Omar Larone, Jesse Brock Univ Dept Math & Stat St Catharines ON L2S 3A1 Canada Univ Laval Dept Math & Stat Quebec City PQ G1V 0A6 Canada
In this paper, we study the titular Diophantine equation for a fixed positive integer y >= 3 in nonnegative integers m, n, and a. We show that the nonnegative integer solutions (n, m, a) are finite in number, and w... 详细信息
来源: 评论
On an extension of a question of Baker
收藏 引用
INTERNATIONAL JOURNAL OF NUMBER THEORY 2023年 第2期19卷 375-388页
作者: Gun, Sanoli Kandhil, Neelam Homi Bhabha Natl Inst Inst Math Sci Chennai 600113 Tamil Nadu India
It is an open question of Baker whether the numbers L(1, chi) for nontrivial Dirichlet characters x with period q are linearly independent over Q. The best known result is due to Baker, Birch and Wirsing which affirms... 详细信息
来源: 评论
ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
收藏 引用
INTERNATIONAL JOURNAL OF NUMBER THEORY 2013年 第5期9卷 1351-1366页
作者: Bravo, Jhon J. Luca, Florian Univ Cauca Dept Matemat Popayan Colombia Univ Nacl Autonoma Mexico Fdn Marcos Moshinsky Mexico City 04510 DF Mexico
Let P(m) denote the largest prime factor of an integer m >= 2, and put P(0) = P(1) = 1. For an integer k >= 2, let (F-n((k)))n >=(2-k) be the k-generalized Fibonacci sequence which starts with 0, ... , 0, 1 (... 详细信息
来源: 评论
A note on Dedekind zeta values at 1/2
收藏 引用
INTERNATIONAL JOURNAL OF NUMBER THEORY 2022年 第6期18卷 1289-1299页
作者: Kandhil, Neelam Homi Bhabha Natl Inst Inst Math Sci Chennai 600113 Tamil Nadu India
For a number field K, let zeta(K) (s) be the Dedekind zeta function associated to K. In this paper, we study non-vanishing and transcendence of zeta(K) as well as its derivative CK at s = 1/2. En route, we strengthen ... 详细信息
来源: 评论
Non-vanishing of Dirichlet series with periodic coefficients
收藏 引用
JOURNAL OF NUMBER THEORY 2014年 第0期145卷 1-21页
作者: Chatterjee, Tapas Murty, M. Ram Queens Univ Dept Math & Stat Kingston ON K7L 3N6 Canada
For any periodic function f : N -> C with period g, we study the Dirichlet series L(s, f) := Sigma(n >= 1) f(n)/n(s). It is well-known that this admits an analytic continuation to the entire complex plane except... 详细信息
来源: 评论
On the D(-1)-triple {1, k2+1, k2+2k+2} and its unique D(1)-extension
收藏 引用
JOURNAL OF NUMBER THEORY 2011年 第1期131卷 120-137页
作者: He, Bo Togbe, Alain Purdue Univ N Cent Dept Math Westville IN 46391 USA Aba Teachers Coll Dept Math Wenchuan 623000 Sichuan Peoples R China
In this paper, we consider the D(-1)-triple {1, k(2) + 1, (k + 1)(2) + 1}. We extend the result obtained by Dujella. Filipin, and Fuchs (2007) [13] by determining the D(-1)-extension of this set. Moreover, we obtain a... 详细信息
来源: 评论