咨询与建议

限定检索结果

文献类型

  • 18 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 26 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 17 篇 计算机科学与技术...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 17 篇 理学
    • 16 篇 数学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 26 篇 linear threshold...
  • 5 篇 boolean function...
  • 4 篇 halfspaces
  • 3 篇 computational le...
  • 3 篇 neural networks
  • 2 篇 fourier analysis
  • 2 篇 complexity measu...
  • 2 篇 low-degree polyn...
  • 2 篇 chow parameters
  • 2 篇 perceptron algor...
  • 2 篇 threshold circui...
  • 2 篇 complexity of le...
  • 2 篇 learning with no...
  • 2 篇 boosting
  • 2 篇 communication co...
  • 2 篇 lower bounds
  • 2 篇 property testing
  • 1 篇 mistake bounds
  • 1 篇 unate functions
  • 1 篇 tree rank

机构

  • 6 篇 columbia univ de...
  • 2 篇 univ texas austi...
  • 1 篇 ibm corp almaden...
  • 1 篇 univ wisconsin m...
  • 1 篇 vilnius univ fac...
  • 1 篇 eecs and csail
  • 1 篇 harvard univ div...
  • 1 篇 yale univ dept m...
  • 1 篇 google mountain ...
  • 1 篇 univ helsinki de...
  • 1 篇 carnegie mellon ...
  • 1 篇 duquesne univ pi...
  • 1 篇 univ calif san d...
  • 1 篇 ci homi bhabha n...
  • 1 篇 georgia inst tec...
  • 1 篇 mit elect engn &...
  • 1 篇 mit dept math ca...
  • 1 篇 mit csail cambri...
  • 1 篇 mit csail 32 vas...
  • 1 篇 carnegie mellon ...

作者

  • 5 篇 servedio rocco a...
  • 2 篇 diakonikolas ili...
  • 2 篇 o'donnell ryan
  • 2 篇 siu ky
  • 2 篇 sherstov alexand...
  • 2 篇 blais eric
  • 1 篇 sreenivasaiah ka...
  • 1 篇 mahajan meena
  • 1 篇 warmuth mk
  • 1 篇 de anindya
  • 1 篇 bruck j
  • 1 篇 rabani yuval
  • 1 篇 gershenson danie...
  • 1 篇 carmosino marco ...
  • 1 篇 vempala s
  • 1 篇 servedio ra
  • 1 篇 schober steffen
  • 1 篇 potechin aaron
  • 1 篇 kannan r
  • 1 篇 bun mark

语言

  • 23 篇 英文
  • 3 篇 其他
检索条件"主题词=Linear threshold functions"
26 条 记 录,以下是11-20 订阅
排序:
ON THE WEIGHT OF HALFSPACES OVER HAMMING BALLS
收藏 引用
SIAM JOURNAL ON DISCRETE MATHEMATICS 2014年 第3期28卷 1035-1061页
作者: Long, Philip M. Servedio, Rocco A. Google Mountain View CA 94043 USA Columbia Univ Dept Comp Sci New York NY 10027 USA
For S subset of {0, 1}(n), a Boolean function f : S -> {-1, 1} is a halfspace over S if there exist w is an element of R-n and theta is an element of R such that f(x) = sign(w . x - theta) for all x is an element o... 详细信息
来源: 评论
Properties of Boolean networks and methods for their tests
收藏 引用
EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY 2013年 第1期2013卷 1-1页
作者: Klotz, Johannes Georg Feuer, Ronny Sawodny, Oliver Bossert, Martin Ederer, Michael Schober, Steffen Univ Ulm Inst Commun Engn Albert Einstein Allee 43 D-89081 Ulm Germany Univ Stuttgart Inst Syst Dynam D-70569 Stuttgart Germany
Transcriptional regulation networks are often modeled as Boolean networks. We discuss certain properties of Boolean functions (BFs), which are considered as important in such networks, namely, membership to the classe... 详细信息
来源: 评论
EXPLICIT DIMENSION REDUCTION AND ITS APPLICATIONS
收藏 引用
SIAM JOURNAL ON COMPUTING 2012年 第1期41卷 219-249页
作者: Karnin, Zohar S. Rabani, Yuval Shpilka, Amir Technion Israel Inst Technol Fac Comp Sci IL-32000 Haifa Israel Hebrew Univ Jerusalem Rachel & Selim Benin Sch Comp Sci & Engn IL-91904 Jerusalem Israel Microsoft Res Cambridge MA 02142 USA
We construct a small set of explicit linear transformations mapping R-n to R-t, where t = O(log(gamma(-1))epsilon(-2)), such that the L-2 norm of any vector in R-n is distorted by at most 1 +/- epsilon in at least a f... 详细信息
来源: 评论
Active Property Testing
Active Property Testing
收藏 引用
IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS)
作者: Balcan, Maria-Florina Blais, Eric Blum, Avrim Yang, Liu Georgia Inst Technol Sch Comp Sci Atlanta GA 30332 USA Carnegie Mellon Univ Pittsburgh Sch Comp Sci Pittsburgh PA USA
One motivation for property testing of boolean functions is the idea that testing can provide a fast preprocessing step before learning. However, in most machine learning applications, it is not possible to request fo... 详细信息
来源: 评论
Polynomial regression under arbitrary product distributions
收藏 引用
MACHINE LEARNING 2010年 第2-3期80卷 273-294页
作者: Blais, Eric O'Donnell, Ryan Wimmer, Karl Carnegie Mellon Univ Pittsburgh PA 15213 USA Duquesne Univ Pittsburgh PA 15219 USA
In recent work, Kalai, Klivans, Mansour, and Servedio (2005) studied a variant of the "Low-Degree (Fourier) Algorithm" for learning under the uniform probability distribution on {0, 1}(n). They showed that t... 详细信息
来源: 评论
TESTING HALFSPACES
收藏 引用
SIAM JOURNAL ON COMPUTING 2010年 第5期39卷 2004-2047页
作者: Matulef, Kevin O'Donnell, Ryan Rubinfeld, Ronitt Servedio, Rocco A. MIT Dept Math Cambridge MA 02142 USA Carnegie Mellon Univ Dept Comp Sci Pittsburgh PA 15213 USA MIT CSAIL Cambridge MA 02139 USA Columbia Univ Dept Comp Sci New York NY 10027 USA
This paper addresses the problem of testing whether a Boolean-valued function f is a halfspace, i.e., a function of the form f(x) = sgn(w . x - theta). We consider halfspaces over the continuous domain R-n (endowed wi... 详细信息
来源: 评论
Halfspace matrices
收藏 引用
COMPUTATIONAL COMPLEXITY 2008年 第2期17卷 149-178页
作者: Sherstov, Alexander A. Univ Texas Austin Dept Comp Sci Austin TX 78712 USA
We introduce the notion of a halfspace matrix, which is a sign matrix A with rows indexed by linear threshold functions f, columns indexed by inputs x is an element of {-1, 1}(n), and the entries given by A(f,x) = f (... 详细信息
来源: 评论
Halfspace matrices
Halfspace matrices
收藏 引用
22nd Annual IEEE Conference on Computational Complexity
作者: Sherstov, Alexander A. Univ Texas Austin Dept Comp Sci Austin TX 78712 USA
We introduce the notion of a halfspace matrix, which is a sign matrix A with rows indexed by linear threshold functions f, columns indexed by inputs x is an element of {-1, 1}(n), and the entries given by A(f,x) = f (... 详细信息
来源: 评论
Monotone Boolean formulas can approximate monotone linear threshold functions
收藏 引用
DISCRETE APPLIED MATHEMATICS 2004年 第1-3期142卷 181-187页
作者: Servedio, RA Columbia Univ Dept Comp Sci New York NY 10027 USA
We show that any monotone linear threshold function on n Boolean variables can be approximated to within any constant accuracy by a monotone Boolean formula of poly(n) size. (C) 2004 Elsevier B.V. All rights reserved.
来源: 评论
Every linear threshold function has a low-weight approximator
收藏 引用
COMPUTATIONAL COMPLEXITY 2007年 第2期16卷 180-209页
作者: Servedio, Rocco A. Columbia Univ Dept Comp Sci New York NY 10027 USA
Given any linear threshold function f on n Boolean variables, we construct a linear threshold function g which disagrees with f on at most an epsilon fraction of inputs and has integer weights each of magnitude at mos... 详细信息
来源: 评论