Nowadays, it would be very difficult to deny the need to prioritize sustainable development through energy efficiency at all consumption levels. In this context, an energy management system (EMS) is a suitable option ...
详细信息
Nowadays, it would be very difficult to deny the need to prioritize sustainable development through energy efficiency at all consumption levels. In this context, an energy management system (EMS) is a suitable option for continuously improving energy efficiency, particularly on the user side. An EMS is a set of technological tools that manages energy consumption information and allows its analysis. EMS, in combination with information technologies, has given rise to intelligent EMS (iEMS), which, aside from lending support to monitoring and reporting functions as an EMS does, it has the ability to model, forecast, control and diagnose energy consumption in a predictive way. The main objective of an iEMS is to continuously improve energy efficiency (on-line) as automatically as possible. The core of an iEMS is its loadmodelingforecastingsystem (LMFS). It takes advantage of historical information on energy consumption and energy-related variables in order to model and forecast load profiles and, if available, generator profiles. These models and forecasts are the main information used for iEMS applications for control and diagnosis. That is why in this thesis we have focused on the study, analysis and development of LMFS on the user side. The fact that the LMFS is applied on the user side to support an iEMS means that specific characteristics are required that in other areas of loadforecasting they are not. First of all, the user-side load profiles (LPs) have a higher random behavior than others, as for example, in power system distribution or generation. This makes the modeling and forecasting process more difficult. Second, on the user side --for example an industrial user-- there is a high number and variety of places that can be monitored, modeled and forecasted, as well as their precedence or nature. Thus, on the one hand, an LMFS requires a high degree of autonomy to automatically or autonomously generate the demanded models. And on the other hand, it needs
暂无评论