Facial expression analysis and recognition has gained popularity in the last few years for its challenging nature and broad area of applications like HCI, pain detection, operator fatigue detection, surveillance, etc....
详细信息
Facial expression analysis and recognition has gained popularity in the last few years for its challenging nature and broad area of applications like HCI, pain detection, operator fatigue detection, surveillance, etc. The key of real-time FER system is exploiting its variety of features extracted from the source image. In this article, three different features viz. local binary pattern, Gabor, and localdirectionality pattern were exploited to perform feature fusion and two classification algorithms viz. support vector machines and artificial neural networks were used to validate the proposed model on benchmark datasets. The classification accuracy has been improved in the proposed feature fusion of Gabor and LDP features with SVM classifier, recorded an average accuracy of 93.83% on JAFFE, 95.83% on CK and 96.50% on MMI. The recognition rates were compared with the existing studies in the literature and found that the proposed feature fusion model has improved the performance.
暂无评论